These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 31037746)
1. Microarray meta-analysis identifies candidate genes for human spermatogenic arrest. Kui F; Ye H; Chen XL; Zhang J Andrologia; 2019 Sep; 51(8):e13301. PubMed ID: 31037746 [TBL] [Abstract][Full Text] [Related]
2. Identification and functional analysis of spermatogenesis-associated gene modules in azoospermia by weighted gene coexpression network analysis. Zheng W; Zou Z; Lin S; Chen X; Wang F; Li X; Dai J J Cell Biochem; 2019 Mar; 120(3):3934-3944. PubMed ID: 30269365 [TBL] [Abstract][Full Text] [Related]
3. Testis transcriptome profiling identified genes involved in spermatogenic arrest of cattleyak. Wu S; Mipam T; Xu C; Zhao W; Shah MA; Yi C; Luo H; Cai X; Zhong J PLoS One; 2020; 15(2):e0229503. PubMed ID: 32092127 [TBL] [Abstract][Full Text] [Related]
4. Meiotic arrest occurs most frequently at metaphase and is often incomplete in azoospermic men. Enguita-Marruedo A; Sleddens-Linkels E; Ooms M; de Geus V; Wilke M; Blom E; Dohle GR; Looijenga LHJ; van Cappellen W; Baart EB; Baarends WM Fertil Steril; 2019 Dec; 112(6):1059-1070.e3. PubMed ID: 31767154 [TBL] [Abstract][Full Text] [Related]
5. Fold-change correction values for testicular somatic transcripts in gene expression studies of human spermatogenesis. Cappallo-Obermann H; Feig C; Schulze W; Spiess AN Hum Reprod; 2013 Mar; 28(3):590-8. PubMed ID: 23303554 [TBL] [Abstract][Full Text] [Related]
6. Identification of hub genes associated with spermatogenesis by bioinformatics analysis. Liu S; Bian YC; Wang WL; Liu TJ; Zhang T; Chang Y; Xiao R; Zhang CL Sci Rep; 2023 Oct; 13(1):18435. PubMed ID: 37891374 [TBL] [Abstract][Full Text] [Related]
7. Identification of ten novel genes involved in human spermatogenesis by microarray analysis of testicular tissue. Lin YH; Lin YM; Teng YN; Hsieh TY; Lin YS; Kuo PL Fertil Steril; 2006 Dec; 86(6):1650-8. PubMed ID: 17074343 [TBL] [Abstract][Full Text] [Related]
8. Cross-platform gene expression signature of human spermatogenic failure reveals inflammatory-like response. Spiess AN; Feig C; Schulze W; Chalmel F; Cappallo-Obermann H; Primig M; Kirchhoff C Hum Reprod; 2007 Nov; 22(11):2936-46. PubMed ID: 17921478 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data. Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134 [TBL] [Abstract][Full Text] [Related]
10. A new paradigm for profiling testicular gene expression during normal and disturbed human spermatogenesis. Feig C; Kirchhoff C; Ivell R; Naether O; Schulze W; Spiess AN Mol Hum Reprod; 2007 Jan; 13(1):33-43. PubMed ID: 17114209 [TBL] [Abstract][Full Text] [Related]
11. Quantification of DDX3Y, RBMY1, DAZ and TSPY mRNAs in testes of patients with severe impairment of spermatogenesis. Lardone MC; Parodi DA; Valdevenito R; Ebensperger M; Piottante A; Madariaga M; Smith R; Pommer R; Zambrano N; Castro A Mol Hum Reprod; 2007 Oct; 13(10):705-12. PubMed ID: 17881721 [TBL] [Abstract][Full Text] [Related]
12. MicroRNA expression profiles in testicular biopsies of patients with impaired spermatogenesis. Noveski P; Popovska-Jankovic K; Kubelka-Sabit K; Filipovski V; Lazarevski S; Plaseski T; Plaseska-Karanfilska D Andrology; 2016 Nov; 4(6):1020-1027. PubMed ID: 27566408 [TBL] [Abstract][Full Text] [Related]
13. Integrated miRNA and mRNA expression profiling to identify mRNA targets of dysregulated miRNAs in non-obstructive azoospermia. Zhuang X; Li Z; Lin H; Gu L; Lin Q; Lu Z; Tzeng CM Sci Rep; 2015 Jan; 5():7922. PubMed ID: 25628250 [TBL] [Abstract][Full Text] [Related]
14. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250 [TBL] [Abstract][Full Text] [Related]
15. Bioinformatics analysis of gene expression profiles of esophageal squamous cell carcinoma. He Y; Liu J; Zhao Z; Zhao H Dis Esophagus; 2017 May; 30(5):1-8. PubMed ID: 28375447 [TBL] [Abstract][Full Text] [Related]
16. Differentially expressed microRNAs between cattleyak and yak testis. Xu C; Wu S; Zhao W; Mipam T; Liu J; Liu W; Yi C; Shah MA; Yu S; Cai X Sci Rep; 2018 Jan; 8(1):592. PubMed ID: 29330490 [TBL] [Abstract][Full Text] [Related]
17. Identification of Key Pathways and Genes in Anaplastic Thyroid Carcinoma via Integrated Bioinformatics Analysis. Hu S; Liao Y; Chen L Med Sci Monit; 2018 Sep; 24():6438-6448. PubMed ID: 30213925 [TBL] [Abstract][Full Text] [Related]
18. Unique gene expression profile in osteoarthritis synovium compared with cartilage: analysis of publicly accessible microarray datasets. Park R; Ji JD Rheumatol Int; 2016 Jun; 36(6):819-27. PubMed ID: 26942917 [TBL] [Abstract][Full Text] [Related]
19. Identification of differentially expressed genes in pancreatic ductal adenocarcinoma and normal pancreatic tissues based on microarray datasets. Liu L; Wang S; Cen C; Peng S; Chen Y; Li X; Diao N; Li Q; Ma L; Han P Mol Med Rep; 2019 Aug; 20(2):1901-1914. PubMed ID: 31257501 [TBL] [Abstract][Full Text] [Related]
20. Screening and identification of key biomarkers in hepatocellular carcinoma: Evidence from bioinformatic analysis. Li L; Lei Q; Zhang S; Kong L; Qin B Oncol Rep; 2017 Nov; 38(5):2607-2618. PubMed ID: 28901457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]