These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31037821)

  • 1. Phosphazenyl Phosphines: The Most Electron-Rich Uncharged Phosphorus Brønsted and Lewis Bases.
    Ullrich S; Kovačević B; Xie X; Sundermeyer J
    Angew Chem Int Ed Engl; 2019 Jul; 58(30):10335-10339. PubMed ID: 31037821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Novel Uncharged Organic Superbases: Merging Basicity and Functionality.
    Vazdar K; Margetić D; Kovačević B; Sundermeyer J; Leito I; Jahn U
    Acc Chem Res; 2021 Aug; 54(15):3108-3123. PubMed ID: 34308625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus-Containing Superbases: Recent Progress in the Chemistry of Electron-Abundant Phosphines and Phosphazenes.
    Weitkamp RF; Neumann B; Stammler HG; Hoge B
    Chemistry; 2021 Jul; 27(42):10807-10825. PubMed ID: 34032319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basicity Limits of Neutral Organic Superbases.
    Leito I; Koppel IA; Koppel I; Kaupmees K; Tshepelevitsh S; Saame J
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9262-5. PubMed ID: 26088063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tris(imidazolin-2-ylidenamino)phosphine: A Crystalline Phosphorus(III) Superbase That Splits Carbon Dioxide.
    Mehlmann P; Mück-Lichtenfeld C; Tan TTY; Dielmann F
    Chemistry; 2017 May; 23(25):5929-5933. PubMed ID: 27779340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental gas-phase basicity scale of superbasic phosphazenes.
    Kaljurand I; Koppel IA; Kütt A; Rõõm EI; Rodima T; Koppel I; Mishima M; Leito I
    J Phys Chem A; 2007 Feb; 111(7):1245-50. PubMed ID: 17266288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Basicities of Superbasic Phosphonium Ylides and Phosphazenes.
    Saame J; Rodima T; Tshepelevitsh S; Kütt A; Kaljurand I; Haljasorg T; Koppel IA; Leito I
    J Org Chem; 2016 Sep; 81(17):7349-61. PubMed ID: 27392255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Basicities of Phosphazene, Guanidinophosphazene, and Proton Sponge Superbases in the Gas Phase and Solution.
    Kaljurand I; Saame J; Rodima T; Koppel I; Koppel IA; Kögel JF; Sundermeyer J; Köhn U; Coles MP; Leito I
    J Phys Chem A; 2016 Apr; 120(16):2591-604. PubMed ID: 27093092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basicity of some P1 phosphazenes in water and in aqueous surfactant solution.
    Sooväli L; Rodima T; Kaljurand I; Kütt A; Koppel IA; Leito I
    Org Biomol Chem; 2006 Jun; 4(11):2100-5. PubMed ID: 16729124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guanidinophosphazenes: design, synthesis, and basicity in THF and in the gas phase.
    Kolomeitsev AA; Koppel IA; Rodima T; Barten J; Lork E; Röschenthaler GV; Kaljurand I; Kütt A; Koppel I; Mäemets V; Leito I
    J Am Chem Soc; 2005 Dec; 127(50):17656-66. PubMed ID: 16351095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyridinylidenaminophosphines: Facile Access to Highly Electron-Rich Phosphines.
    Rotering P; Wilm LFB; Werra JA; Dielmann F
    Chemistry; 2020 Jan; 26(2):406-411. PubMed ID: 31688978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chelating P2-Bis-phosphazenes with a (R,R)-1,2-Diaminocyclohexane Skeleton: Two New Chiral Superbases.
    Kögel JF; Kovačević B; Ullrich S; Xie X; Sundermeyer J
    Chemistry; 2017 Feb; 23(11):2591-2598. PubMed ID: 28128480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Bases and beyond: The Prominent Contribution of Neutral Push-Pull Organic Molecules towards Superbases in the Gas Phase.
    Raczyńska ED; Gal JF; Maria PC
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free Metallophosphines: Extremely Electron-Rich Phosphorus Superbases That Are Electronically and Sterically Tunable.
    Wei R; Ju S; Liu LL
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202205618. PubMed ID: 35491966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing the Azaazulene Scaffolds in the Design of New Organic Superbases.
    Barić D
    ACS Omega; 2019 Sep; 4(12):15197-15207. PubMed ID: 31552365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superbasic alkyl-substituted bisphosphazene proton sponges: synthesis, structural features, thermodynamic and kinetic basicity, nucleophilicity and coordination chemistry.
    Kögel JF; Xie X; Baal E; Gesevičius D; Oelkers B; Kovačević B; Sundermeyer J
    Chemistry; 2014 Jun; 20(25):7670-85. PubMed ID: 24797248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new synthetic pathway to the second and third generation of superbasic bisphosphazene proton sponges: the run for the best chelating ligand for a proton.
    Kögel JF; Oelkers B; Kovačević B; Sundermeyer J
    J Am Chem Soc; 2013 Nov; 135(47):17768-74. PubMed ID: 24144422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable Singlet Carbenes as Organic Superbases.
    Vermersch F; Yazdani S; Junor GP; Grotjahn DB; Jazzar R; Bertrand G
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27253-27257. PubMed ID: 34729888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brønsted basicities of diamines in the gas phase, acetonitrile, and tetrahydrofuran.
    Rõõm EI; Kütt A; Kaljurand I; Koppel I; Leito I; Koppel IA; Mishima M; Goto K; Miyahara Y
    Chemistry; 2007; 13(27):7631-43. PubMed ID: 17594707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First principles studies toward the design of silylene superbases: a density functional theory study.
    Biswas AK; Lo R; Ganguly B
    J Phys Chem A; 2013 Apr; 117(14):3109-17. PubMed ID: 23488654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.