These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 31038200)
1. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli. Kurgan G; Sievert C; Flores A; Schneider A; Billings T; Panyon L; Morris C; Taylor E; Kurgan L; Cartwright R; Wang X Biotechnol Bioeng; 2019 Aug; 116(8):2074-2086. PubMed ID: 31038200 [TBL] [Abstract][Full Text] [Related]
2. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Sievert C; Nieves LM; Panyon LA; Loeffler T; Morris C; Cartwright RA; Wang X Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7349-7354. PubMed ID: 28655843 [TBL] [Abstract][Full Text] [Related]
3. Mutation in galP improved fermentation of mixed sugars to succinate using engineered Escherichia coli AS1600a and AM1 mineral salts medium. Sawisit A; Jantama K; Zheng H; Yomano LP; York SW; Shanmugam KT; Ingram LO Bioresour Technol; 2015 Oct; 193():433-41. PubMed ID: 26159300 [TBL] [Abstract][Full Text] [Related]
4. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli. Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743 [TBL] [Abstract][Full Text] [Related]
5. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium. Khunnonkwao P; Jantama SS; Kanchanatawee S; Jantama K Appl Microbiol Biotechnol; 2018 Jan; 102(1):127-141. PubMed ID: 29079860 [TBL] [Abstract][Full Text] [Related]
6. The XylR variant (R121C and P363S) releases arabinose-induced catabolite repression on xylose fermentation and enhances coutilization of lignocellulosic sugar mixtures. Martinez R; Flores AD; Dufault ME; Wang X Biotechnol Bioeng; 2019 Dec; 116(12):3476-3481. PubMed ID: 31429933 [TBL] [Abstract][Full Text] [Related]
7. Engineering and adaptive evolution of Escherichia coli for D-lactate fermentation reveals GatC as a xylose transporter. Utrilla J; Licona-Cassani C; Marcellin E; Gosset G; Nielsen LK; Martinez A Metab Eng; 2012 Sep; 14(5):469-76. PubMed ID: 22885034 [TBL] [Abstract][Full Text] [Related]
8. Adaptation on xylose improves glucose-xylose co-utilization and ethanol production in a carbon catabolite repression (CCR) compromised ethanologenic strain. Dev C; Jilani SB; Yazdani SS Microb Cell Fact; 2022 Aug; 21(1):154. PubMed ID: 35933385 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Kim SM; Choi BY; Ryu YS; Jung SH; Park JM; Kim GH; Lee SK Metab Eng; 2015 Jul; 30():141-148. PubMed ID: 26045332 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous glucose and xylose utilization by an Kaplan NA; Islam KN; Kanis FC; Verderber JR; Wang X; Jones JA; Koffas MAG Appl Environ Microbiol; 2024 Feb; 90(2):e0216923. PubMed ID: 38289128 [TBL] [Abstract][Full Text] [Related]
11. Experimental evolution reveals an effective avenue for d-lactic acid production from glucose-xylose mixtures via enhanced Glk activity and a cAMP-independent CRP mutation. Qiao J; Fang Y; Li Z; Li J; Cai J; Liu W; Wang H; Zhu X; Zhang X Biotechnol Bioeng; 2024 Nov; 121(11):3514-3526. PubMed ID: 39082641 [TBL] [Abstract][Full Text] [Related]
12. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Zhang X; Jantama K; Moore JC; Jarboe LR; Shanmugam KT; Ingram LO Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20180-5. PubMed ID: 19918073 [TBL] [Abstract][Full Text] [Related]
13. Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars. Kim J; Tremaine M; Grass JA; Purdy HM; Landick R; Kiley PJ; Reed JL Biotechnol J; 2019 Sep; 14(9):e1800441. PubMed ID: 31297978 [TBL] [Abstract][Full Text] [Related]
14. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production. Wang X; Goh EB; Beller HR Microb Cell Fact; 2018 Jan; 17(1):12. PubMed ID: 29374483 [TBL] [Abstract][Full Text] [Related]
15. An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Ren C; Chen T; Zhang J; Liang L; Lin Z Microb Cell Fact; 2009 Dec; 8():66. PubMed ID: 20003468 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli. Jarmander J; Hallström BM; Larsson G Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675 [TBL] [Abstract][Full Text] [Related]
17. Controlling catabolite repression for isobutanol production using glucose and xylose by overexpressing the xylose regulator. Lee HJ; Kim B; Kim S; Cho DH; Jung H; Bhatia SK; Gurav R; Ahn J; Park JH; Choi KY; Yang YH J Biotechnol; 2022 Nov; 359():21-28. PubMed ID: 36152769 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of Escherichia coli to produce succinate from woody hydrolysate under anaerobic conditions. Zhu F; Wang C; San KY; Bennett GN J Ind Microbiol Biotechnol; 2020 Feb; 47(2):223-232. PubMed ID: 31989325 [TBL] [Abstract][Full Text] [Related]
20. Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures. Guo Q; Ullah I; Zheng LJ; Gao XQ; Liu CY; Zheng HD; Fan LH; Deng L Biotechnol Bioeng; 2022 Feb; 119(2):388-398. PubMed ID: 34837379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]