BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 31038232)

  • 1. Perfusion of the skin's microcirculation after cold-water immersion (10°C) and partial-body cryotherapy (-135°C).
    Hohenauer E; Deliens T; Clarys P; Clijsen R
    Skin Res Technol; 2019 Sep; 25(5):677-682. PubMed ID: 31038232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold-water or partial-body cryotherapy? Comparison of physiological responses and recovery following muscle damage.
    Hohenauer E; Costello JT; Stoop R; Küng UM; Clarys P; Deliens T; Clijsen R
    Scand J Med Sci Sports; 2018 Mar; 28(3):1252-1262. PubMed ID: 29130570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial-body cryotherapy (-135°C) and cold-water immersion (10°C) after muscle damage in females.
    Hohenauer E; Costello JT; Deliens T; Clarys P; Stoop R; Clijsen R
    Scand J Med Sci Sports; 2020 Mar; 30(3):485-495. PubMed ID: 31677292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold Water Mediates Greater Reductions in Limb Blood Flow than Whole Body Cryotherapy.
    Mawhinney C; Low DA; Jones H; Green DJ; Costello JT; Gregson W
    Med Sci Sports Exerc; 2017 Jun; 49(6):1252-1260. PubMed ID: 28141620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of cold water immersion on limb and cutaneous blood flow at rest.
    Gregson W; Black MA; Jones H; Milson J; Morton J; Dawson B; Atkinson G; Green DJ
    Am J Sports Med; 2011 Jun; 39(6):1316-23. PubMed ID: 21335348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle, skin and core temperature after -110°c cold air and 8°c water treatment.
    Costello JT; Culligan K; Selfe J; Donnelly AE
    PLoS One; 2012; 7(11):e48190. PubMed ID: 23139763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of whole body cryotherapy and cold water immersion on knee skin temperature.
    Costello JT; Donnelly AE; Karki A; Selfe J
    Int J Sports Med; 2014 Jan; 35(1):35-40. PubMed ID: 23780900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Physiological Profile Following Two Popular Cold Interventions After Activity in Hot and Humid Environment.
    Wang Z; Fan Y; Kong X; Viroux P; Tiemessen IJH; Wu H
    Am J Mens Health; 2022; 16(1):15579883221079150. PubMed ID: 35209744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The acute impact of local cooling versus local heating on human skin microcirculation using laser Doppler flowmetry and tissue spectrophotometry.
    Bender D; Tweer S; Werdin F; Rothenberger J; Daigeler A; Held M
    Burns; 2020 Feb; 46(1):104-109. PubMed ID: 31859085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of infrared thermography and laser speckle contrast imaging for the dynamic assessment of digital microvascular function.
    Pauling JD; Shipley JA; Raper S; Watson ML; Ward SG; Harris ND; McHugh NJ
    Microvasc Res; 2012 Mar; 83(2):162-7. PubMed ID: 21763703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing Cold Water Immersion for Exercise-Induced Hyperthermia: A Meta-analysis.
    Zhang Y; Davis JK; Casa DJ; Bishop PA
    Med Sci Sports Exerc; 2015 Nov; 47(11):2464-72. PubMed ID: 25910052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive Ability of Body Fat Percentage and Thigh Anthropometrics on Tissue Cooling During Cold-Water Immersion.
    Rech N; Bressel E; Louder T
    J Athl Train; 2021 Jun; 56(6):548-554. PubMed ID: 33150428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in quadriceps femoris muscle perfusion following different degrees of cold-water immersion.
    Mawhinney C; Heinonen I; Low DA; Han C; Jones H; Kalliokoski KK; Kirjavainen A; Kemppainen J; Di Salvo V; Weston M; Cable T; Gregson W
    J Appl Physiol (1985); 2020 May; 128(5):1392-1401. PubMed ID: 32352343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals.
    Caldwell JN; van den Heuvel AMJ; Kerry P; Clark MJ; Peoples GE; Taylor NAS
    Exp Physiol; 2018 Apr; 103(4):512-522. PubMed ID: 29345019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two skin temperature assessment methods after the application of topical revulsive products: Conductive iButton data logger system vs contact-free infrared thermometry.
    Stoop R; Hohenauer E; Aerenhouts D; Barel AO; Deliens T; Clijsen R; Clarys P
    Skin Res Technol; 2020 Sep; 26(5):648-653. PubMed ID: 32274890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of cold-water immersion on limb and cutaneous blood flow after exercise.
    Mawhinney C; Jones H; Joo CH; Low DA; Green DJ; Gregson W
    Med Sci Sports Exerc; 2013 Dec; 45(12):2277-85. PubMed ID: 24240118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a new whole-body cryotherapy chamber based on forced convection.
    Bouzigon R; Arfaoui A; Grappe F; Ravier G; Jarlot B; Dugue B
    J Therm Biol; 2017 Apr; 65():138-144. PubMed ID: 28343567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat.
    Minett GM; Duffield R; Billaut F; Cannon J; Portus MR; Marino FE
    Scand J Med Sci Sports; 2014 Aug; 24(4):656-66. PubMed ID: 23458430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral blood flow changes in response to postexercise cold water immersion.
    Choo HC; Nosaka K; Peiffer JJ; Ihsan M; Yeo CC; Abbiss CR
    Clin Physiol Funct Imaging; 2018 Jan; 38(1):46-55. PubMed ID: 27464622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooling Rates of Hyperthermic Humans Wearing American Football Uniforms When Cold-Water Immersion Is Delayed.
    Miller KC; Di Mango TA; Katt GE
    J Athl Train; 2018 Dec; 53(12):1200-1205. PubMed ID: 30562055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.