BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 31038407)

  • 1. Deep Learning for Diagnosis of Chronic Myocardial Infarction on Nonenhanced Cardiac Cine MRI.
    Zhang N; Yang G; Gao Z; Xu C; Zhang Y; Shi R; Keegan J; Xu L; Zhang H; Fan Z; Firmin D
    Radiology; 2019 Jun; 291(3):606-617. PubMed ID: 31038407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subacute and Chronic Left Ventricular Myocardial Scar: Accuracy of Texture Analysis on Nonenhanced Cine MR Images.
    Baessler B; Mannil M; Oebel S; Maintz D; Alkadhi H; Manka R
    Radiology; 2018 Jan; 286(1):103-112. PubMed ID: 28836886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Intelligence for Contrast-Free MRI: Scar Assessment in Myocardial Infarction Using Deep Learning-Based Virtual Native Enhancement.
    Zhang Q; Burrage MK; Shanmuganathan M; Gonzales RA; Lukaschuk E; Thomas KE; Mills R; Leal Pelado J; Nikolaidou C; Popescu IA; Lee YP; Zhang X; Dharmakumar R; Myerson SG; Rider O; ; Channon KM; Neubauer S; Piechnik SK; Ferreira VM
    Circulation; 2022 Nov; 146(20):1492-1503. PubMed ID: 36124774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging.
    Larroza A; Materka A; López-Lereu MP; Monmeneu JV; Bodí V; Moratal D
    Eur J Radiol; 2017 Jul; 92():78-83. PubMed ID: 28624024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction.
    Larroza A; López-Lereu MP; Monmeneu JV; Gavara J; Chorro FJ; Bodí V; Moratal D
    Med Phys; 2018 Apr; 45(4):1471-1480. PubMed ID: 29389013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional maximum principal strain using cardiac computed tomography for identification of myocardial infarction.
    Tanabe Y; Kido T; Kurata A; Sawada S; Suekuni H; Kido T; Yokoi T; Uetani T; Inoue K; Miyagawa M; Mochizuki T
    Eur Radiol; 2017 Apr; 27(4):1667-1675. PubMed ID: 27541353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of low signal intensity assessed by cine magnetic resonance imaging on detection of poorly viable myocardium in patients with prior myocardial infarction.
    Ota S; Tanimoto T; Orii M; Hirata K; Shiono Y; Shimamura K; Matsuo Y; Yamano T; Ino Y; Kitabata H; Yamaguchi T; Kubo T; Tanaka A; Imanishi T; Akasaka T
    Int Heart J; 2015 May; 56(3):273-7. PubMed ID: 25902886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection.
    Avard E; Shiri I; Hajianfar G; Abdollahi H; Kalantari KR; Houshmand G; Kasani K; Bitarafan-Rajabi A; Deevband MR; Oveisi M; Zaidi H
    Comput Biol Med; 2022 Feb; 141():105145. PubMed ID: 34929466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native T1 mapping to detect extent of acute and chronic myocardial infarction: comparison with late gadolinium enhancement technique.
    Dastidar AG; Harries I; Pontecorboli G; Bruno VD; De Garate E; Moret C; Baritussio A; Johnson TW; McAlindon E; Bucciarelli-Ducci C
    Int J Cardiovasc Imaging; 2019 Mar; 35(3):517-527. PubMed ID: 30357547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Late gadolinium-enhanced magnetic resonance imaging in acute and chronic myocardial infarction. Improved prediction of regional myocardial contraction in the chronic state by measuring thickness of nonenhanced myocardium.
    Ichikawa Y; Sakuma H; Suzawa N; Kitagawa K; Makino K; Hirano T; Takeda K
    J Am Coll Cardiol; 2005 Mar; 45(6):901-9. PubMed ID: 15766827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native T1 Mapping by 3-T CMR Imaging for Characterization of Chronic Myocardial Infarctions.
    Kali A; Choi EY; Sharif B; Kim YJ; Bi X; Spottiswoode B; Cokic I; Yang HJ; Tighiouart M; Conte AH; Li D; Berman DS; Choi BW; Chang HJ; Dharmakumar R
    JACC Cardiovasc Imaging; 2015 Sep; 8(9):1019-1030. PubMed ID: 26298071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning-based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study.
    Tao Q; Yan W; Wang Y; Paiman EHM; Shamonin DP; Garg P; Plein S; Huang L; Xia L; Sramko M; Tintera J; de Roos A; Lamb HJ; van der Geest RJ
    Radiology; 2019 Jan; 290(1):81-88. PubMed ID: 30299231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of free-breathing late gadolinium-enhanced cardiovascular MRI for assessment of myocardial infarction: navigator-gated versus single-shot imaging.
    Matsumoto H; Matsuda T; Miyamoto K; Nakatsuma K; Sugahara M; Shimada T
    Int J Cardiol; 2013 Sep; 168(1):94-9. PubMed ID: 23040999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of knowledge-based iterative model reconstruction on myocardial late iodine enhancement in computed tomography and comparison with cardiac magnetic resonance.
    Tanabe Y; Kido T; Kurata A; Fukuyama N; Yokoi T; Kido T; Uetani T; Vembar M; Dhanantwari A; Tokuyasu S; Yamashita N; Mochizuki T
    Int J Cardiovasc Imaging; 2017 Oct; 33(10):1609-1618. PubMed ID: 28409258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of infarct-specific cardiac motion dysfunction using modeling and multimodal magnetic resonance merging.
    Leong CO; Liew YM; Bilgen M; Abdul Aziz YF; Chee KH; Chiam YK; Lim E
    J Magn Reson Imaging; 2017 Feb; 45(2):525-534. PubMed ID: 27418150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quality assurance of late gadolinium enhancement cardiac magnetic resonance images: a deep learning classifier for confidence in the presence or absence of abnormality with potential to prompt real-time image optimization.
    Zaman S; Vimalesvaran K; Chappell D; Varela M; Peters NS; Shiwani H; Knott KD; Davies RH; Moon JC; Bharath AA; Linton NW; Francis DP; Cole GD; Howard JP
    J Cardiovasc Magn Reson; 2024 Summer; 26(1):101040. PubMed ID: 38522522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicenter Study on the Diagnostic Performance of Native-T1 Cardiac Magnetic Resonance of Chronic Myocardial Infarctions at 3T.
    Wang G; Lee SE; Yang Q; Sadras V; Patel S; Yang HJ; Sharif B; Kali A; Cokic I; Xie G; Tighiouart M; Collins J; Li D; Berman DS; Chang HJ; Dharmakumar R
    Circ Cardiovasc Imaging; 2020 Jun; 13(6):e009894. PubMed ID: 32507020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prognostic impact of unrecognized myocardial scar in the non-culprit territories by cardiac magnetic resonance imaging in patients with acute myocardial infarction.
    Omori T; Kurita T; Dohi K; Takasaki A; Nakata T; Nakamori S; Fujimoto N; Kitagawa K; Hoshino K; Tanigawa T; Sakuma H; Ito M
    Eur Heart J Cardiovasc Imaging; 2018 Jan; 19(1):108-116. PubMed ID: 28950314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cine and late gadolinium enhancement MRI registration and automated myocardial infarct heterogeneity quantification.
    Guo F; Krahn PRP; Escartin T; Roifman I; Wright G
    Magn Reson Med; 2021 May; 85(5):2842-2855. PubMed ID: 33226667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative T1 Mapping for Detecting Microvascular Obstruction in Reperfused Acute Myocardial Infarction: Comparison with Late Gadolinium Enhancement Imaging.
    Shin JM; Choi EY; Park CH; Han K; Kim TH
    Korean J Radiol; 2020 Aug; 21(8):978-986. PubMed ID: 32677382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.