These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31038680)

  • 1. Chromatin Signature and Transcription Factor Binding Provide a Predictive Basis for Understanding Plant Gene Expression.
    Wu Z; Tang J; Zhuo J; Tian Y; Zhao F; Li Z; Yan Y; Yang R
    Plant Cell Physiol; 2019 Jul; 60(7):1471-1486. PubMed ID: 31038680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes.
    Mahrez W; Arellano MS; Moreno-Romero J; Nakamura M; Shu H; Nanni P; Köhler C; Gruissem W; Hennig L
    Plant Physiol; 2016 Mar; 170(3):1566-77. PubMed ID: 26764380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt-Responsive Genes are Differentially Regulated at the Chromatin Levels Between Seedlings and Roots in Rice.
    Zheng D; Wang L; Chen L; Pan X; Lin K; Fang Y; Wang XE; Zhang W
    Plant Cell Physiol; 2019 Aug; 60(8):1790-1803. PubMed ID: 31111914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone modifications and dynamic regulation of genome accessibility in plants.
    Pfluger J; Wagner D
    Curr Opin Plant Biol; 2007 Dec; 10(6):645-52. PubMed ID: 17884714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL.
    Qian S; Lv X; Scheid RN; Lu L; Yang Z; Chen W; Liu R; Boersma MD; Denu JM; Zhong X; Du J
    Nat Commun; 2018 Jun; 9(1):2425. PubMed ID: 29930355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice.
    Obertello M; Shrivastava S; Katari MS; Coruzzi GM
    Plant Physiol; 2015 Aug; 168(4):1830-43. PubMed ID: 26045464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H2A.Z Represses Gene Expression by Modulating Promoter Nucleosome Structure and Enhancer Histone Modifications in Arabidopsis.
    Dai X; Bai Y; Zhao L; Dou X; Liu Y; Wang L; Li Y; Li W; Hui Y; Huang X; Wang Z; Qin Y
    Mol Plant; 2017 Oct; 10(10):1274-1292. PubMed ID: 28951178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of transcription by the Arabidopsis UVR8 photoreceptor involves a specific histone modification.
    Velanis CN; Herzyk P; Jenkins GI
    Plant Mol Biol; 2016 Nov; 92(4-5):425-443. PubMed ID: 27534420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Rapid and Efficient ChIP Protocol to Profile Chromatin Binding Proteins and Epigenetic Modifications in Arabidopsis.
    Desvoyes B; Vergara Z; Sequeira-Mendes J; Madeira S; Gutierrez C
    Methods Mol Biol; 2018; 1675():71-82. PubMed ID: 29052186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Floral regulators FLC and SOC1 directly regulate expression of the B3-type transcription factor TARGET OF FLC AND SVP 1 at the Arabidopsis shoot apex via antagonistic chromatin modifications.
    Richter R; Kinoshita A; Vincent C; Martinez-Gallegos R; Gao H; van Driel AD; Hyun Y; Mateos JL; Coupland G
    PLoS Genet; 2019 Apr; 15(4):e1008065. PubMed ID: 30946745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive Models of Spatial Transcriptional Response to High Salinity.
    Uygun S; Seddon AE; Azodi CB; Shiu SH
    Plant Physiol; 2017 May; 174(1):450-464. PubMed ID: 28373393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution pattern of histone marks potentially determines their roles in transcription and RNA processing in rice.
    Hu Y; Lai Y; Chen X; Zhou DX; Zhao Y
    J Plant Physiol; 2020 Jun; 249():153167. PubMed ID: 32353606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone modifications in transcriptional activation during plant development.
    Berr A; Shafiq S; Shen WH
    Biochim Biophys Acta; 2011 Oct; 1809(10):567-76. PubMed ID: 21777708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Analysis of the Distinct Types of Chromatin Interactions in Arabidopsis thaliana.
    Wang J; Zhou Y; Li X; Meng X; Fan M; Chen H; Xue J; Chen M
    Plant Cell Physiol; 2017 Jan; 58(1):57-70. PubMed ID: 28064247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNAi-independent de novo DNA methylation revealed in Arabidopsis mutants of chromatin remodeling gene DDM1.
    Sasaki T; Kobayashi A; Saze H; Kakutani T
    Plant J; 2012 Jun; 70(5):750-8. PubMed ID: 22269081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana.
    Ay N; Irmler K; Fischer A; Uhlemann R; Reuter G; Humbeck K
    Plant J; 2009 Apr; 58(2):333-46. PubMed ID: 19143996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Use of the Chromatin Immunoprecipitation Technique for In Vivo Identification of Plant Protein-DNA Interactions.
    Jarillo JA; Komar DN; Piñeiro M
    Methods Mol Biol; 2018; 1794():323-334. PubMed ID: 29855969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant Elongator-mediated transcriptional control in a chromatin and epigenetic context.
    Woloszynska M; Le Gall S; Van Lijsebettens M
    Biochim Biophys Acta; 2016 Aug; 1859(8):1025-33. PubMed ID: 27354117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution mapping of H4K16 and H3K23 acetylation reveals conserved and unique distribution patterns in Arabidopsis and rice.
    Lu L; Chen X; Sanders D; Qian S; Zhong X
    Epigenetics; 2015; 10(11):1044-53. PubMed ID: 26646900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.