These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31038693)

  • 1. ENVIRONMENTAL TRITIUM AROUND A FUSION TEST FACILITY.
    Tanaka M; Akata N; Iwata C
    Radiat Prot Dosimetry; 2019 Oct; 184(3-4):324-327. PubMed ID: 31038693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LEVELS OF ATMOSPHERIC TRITIUM IN THE SITE OF FUSION TEST FACILITY.
    Tanaka M; Iwata C; Nakada M; Kato A; Akata N
    Radiat Prot Dosimetry; 2022 Sep; 198(13-15):1084-1089. PubMed ID: 36083758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotope Composition and Chemical Species of Monthly Precipitation Collected at the Site of a Fusion Test Facility in Japan.
    Akata N; Tanaka M; Iwata C; Kato A; Nakada M; Kovács T; Kakiuchi H
    Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31614963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TRITIUM CONCENTRATION IN MONTHLY PRECIPITATION NEAR THE FUSION TEST FACILITY IN JAPAN BEFORE AND AFTER THE DEUTERIUM PLASMA EXPERIMENT.
    Akata N; Iwata C; Nakada M; Kato A; Okada K; Kuwata H; Nakasone S; Tanaka M
    Radiat Prot Dosimetry; 2022 Sep; 198(13-15):976-984. PubMed ID: 36083739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.
    Batistoni P; Villari R; Obryk B; Packer LW; Stamatelatos IE; Popovichev S; Colangeli A; Colling B; Fonnesu N; Loreti S; Klix A; Klosowski M; Malik K; Naish J; Pillon M; Vasilopoulou T; De Felice P; Pimpinella M; Quintieri L;
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):102-108. PubMed ID: 29040768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tritium and workers in fusion devices-lessons learnt.
    Rodriguez-Rodrigo L; Elbez-Uzan J; Alejaldre C
    J Radiol Prot; 2009 Sep; 29(3):351-60. PubMed ID: 19690360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro dissolution of tritium-loaded particles from the JET fusion machine.
    Hodgson SA; Scott JE; Hodgson A
    Radiat Prot Dosimetry; 2007; 127(1-4):55-9. PubMed ID: 18003715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.
    Mozhayev AV; Piper RK; Rathbone BA; McDonald JC
    Health Phys; 2017 Apr; 112(4):364-375. PubMed ID: 28234696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic evaluation of environmental impact due to tritium accidental release from the fusion reactor.
    Nie B; Ni M; Jiang J; Wu Y
    J Environ Radioact; 2015 Oct; 148():137-40. PubMed ID: 26164282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locating tritium sources in a research reactor building.
    Fukui M
    Health Phys; 2005 Oct; 89(4):303-14. PubMed ID: 16155451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Status and problems of fusion reactor development.
    Schumacher U
    Naturwissenschaften; 2001 Mar; 88(3):102-12. PubMed ID: 11402837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant.
    Akata N; Kakiuchi H; Shima N; Iyogi T; Momoshima N; Hisamatsu S
    J Environ Radioact; 2011 Sep; 102(9):837-42. PubMed ID: 21703737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRITIUM, HYDROGEN AND OXYGEN ISOTOPE COMPOSITIONS IN MONTHLY PRECIPITATION SAMPLES COLLECTED AT TOKI, JAPAN.
    Akata N; Hasegawa H; Sugihara S; Tanaka M; Furukawa M; Kurita N; Kovács T; Shiroma Y; Kakiuchi H
    Radiat Prot Dosimetry; 2019 Oct; 184(3-4):338-341. PubMed ID: 31329995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the National Ignition Facility distinguishable-from-background program to accelerator facilities at Lawrence Livermore National Laboratory.
    Packard ED; Mac Kenzie C
    Health Phys; 2013 Jun; 104(6):633-40. PubMed ID: 23629069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tritium instrumentation for environmental and occupational monitoring--a review.
    Budnitz RJ
    Health Phys; 1974 Feb; 26(2):165-78. PubMed ID: 4279232
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on diurnal variation of atmospheric tritium concentration at a sampling location near to PHWR site in Semi-Arid Zone, India.
    Nankar DP; Patra AK; Joshi CP; Chandrakar A; Saradhi IV; Kumar AV
    J Environ Radioact; 2023 May; 261():107123. PubMed ID: 36750002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of hydrogen isotope in the soil around the Qinshan Nuclear Power Plant.
    Liang J; Cheng WY; Li JL; Xue XC; Deng K; Liang CF; Du L; Zhang Q; Liu W
    J Environ Radioact; 2023 Jul; 263():107170. PubMed ID: 37031627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An attempt for modeling the atmospheric transport of 3H around Kakrapar Atomic Power Station.
    Patra AK; Nankar DP; Joshi CP; Venkataraman S; Sundar D; Hegde AG
    Radiat Prot Dosimetry; 2008; 130(3):351-7. PubMed ID: 18664562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Safe handling and monitoring of tritium in research on nuclear fusion (author's transl)].
    Yoshida Y; Naruse Y
    Radioisotopes; 1978 Mar; 27(3):160-72. PubMed ID: 351737
    [No Abstract]   [Full Text] [Related]  

  • 20. A novel portable grab sampler for tritiated water vapor.
    Zaromb S; Justus A; Munyon W; Reilly D; Chen B
    Health Phys; 1997 Mar; 72(3):481-5. PubMed ID: 9030852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.