These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 31038774)

  • 1. Facile Fabrication of Triphenylamine-Based Redox-Active Nanocomposites by a Sol-Gel Method: Enhanced Electrochromic Response Capability and Stability Performance.
    Fan YZ; Chen CH; Liou GS
    Macromol Rapid Commun; 2019 Jul; 40(13):e1900118. PubMed ID: 31038774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Approach of Porous Electrochromic Polyamide/ZrO
    Chiu YW; Pai MH; Liou GS
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35273-35281. PubMed ID: 32664729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochromism and Nonvolatile Memory Device Derived from Triphenylamine-Based Polyimides with Pendant Viologen Units.
    Yen HJ; Tsai CL; Chen SH; Liou GS
    Macromol Rapid Commun; 2017 May; 38(9):. PubMed ID: 28251706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multichromic Polymers Containing Alternating Bi(3-Methoxythiophene) and Triphenylamine Based Units with Para-Protective Substituents.
    Hou Y; Kong L; Ju X; Liu X; Zhao J; Niu Q
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Stable and Rapid Switching Electrochromic Thin Films Based on Metal-Organic Frameworks with Redox-Active Triphenylamine Ligands.
    Liu J; Daphne Ma XY; Wang Z; Xu L; Xu T; He C; Wang F; Lu X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7442-7450. PubMed ID: 31958011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Niobium doped tungsten oxide mesoporous film with enhanced electrochromic and electrochemical energy storage properties.
    Wang WQ; Yao ZJ; Wang XL; Xia XH; Gu CD; Tu JP
    J Colloid Interface Sci; 2019 Feb; 535():300-307. PubMed ID: 30316116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrosynthesis of Aromatic Poly(amide-amine) Films from Triphenylamine-Based Electroactive Compounds for Electrochromic Applications.
    Hsiao SH; Lu HY
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30966007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional Covalent Organic Frameworks for Electrochromic Switching.
    Sarkar M; Dutta TK; Patra A
    Chem Asian J; 2021 Oct; 16(20):3055-3067. PubMed ID: 34403570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Temperature Thermally Annealed Niobium Oxide Thin Films as a Minimally Color Changing Ion Storage Layer in Solution-Processed Polymer Electrochromic Devices.
    He J; You L; Tran DT; Mei J
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4169-4177. PubMed ID: 30608143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-Stable and Multicolor Electrochromic Polyamides with Four Triarylamine Cores in the Repeating Unit.
    Chern YT; Yen CC; Wang JM; Lu IS; Huang BW; Hsiao SH
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilizing Hybrid Electrochromic Devices through Pairing Electrochromic Polymers with Minimally Color-Changing Ion-Storage Materials Having Closely Matched Electroactive Voltage Windows.
    Li X; Wang Z; Chen K; Zemlyanov DY; You L; Mei J
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5312-5318. PubMed ID: 33470091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorless to Multicolored, Fast Switching, and Highly Stable Electrochromic Devices Based on Thermally Cross-Linking Copolymer.
    Lv X; Li J; Xu L; Zhu X; Tameev A; Nekrasov A; Kim G; Xu H; Zhang C
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41826-41835. PubMed ID: 34428894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid/Liquid Interfacial Suzuki Polymerization Prepared Novel Triphenylamine-Based Conjugated Polymer Films with Excellent Electrochromic Properties.
    Zhang L; Zhan W; Dong Y; Yang T; Zhang C; Ouyang M; Li W
    ACS Appl Mater Interfaces; 2021 May; 13(17):20810-20820. PubMed ID: 33886266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid materials and polymer electrolytes for electrochromic device applications.
    Thakur VK; Ding G; Ma J; Lee PS; Lu X
    Adv Mater; 2012 Aug; 24(30):4071-96. PubMed ID: 22581710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the fluorescent response of a novel electroactive polymer with multiple stimuli.
    Wang S; Berda EB; Lu X; Li X; Wang C; Chao D
    Macromol Rapid Commun; 2013 Oct; 34(20):1648-53. PubMed ID: 24105939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile approach to prepare porous polyamide films with enhanced electrochromic performance.
    Pan BC; Chen WH; Hsiao SH; Liou GS
    Nanoscale; 2018 Sep; 10(35):16613-16620. PubMed ID: 30155532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Inorganic All-Solid-State Electrochromic Devices toward Visual Energy Storage and Two-Dimensional Color Tunability.
    Ding Y; Wang M; Mei Z; Diao X
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15646-15656. PubMed ID: 36926798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of Electrochromic Switching Properties with Tröger's Base-Derived Intrinsic Microporous Polyamide Films.
    Pai MH; Hu CC; Liou GS
    Macromol Rapid Commun; 2021 Dec; 42(23):e2100492. PubMed ID: 34553802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Electrochromic Covalent Hybrid Framework Membranes via a Facile One-Pot Synthesis.
    Liu J; Li M; Yu J
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2051-2057. PubMed ID: 34978179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Brief Overview of Electrochromic Materials and Related Devices: A Nanostructured Materials Perspective.
    Shchegolkov AV; Jang SH; Shchegolkov AV; Rodionov YV; Sukhova AO; Lipkin MS
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.