BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 31038777)

  • 1. Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects.
    Korth KL; Doege SJ; Park SH; Goggin FL; Wang Q; Gomez SK; Liu G; Jia L; Nakata PA
    Plant Physiol; 2006 May; 141(1):188-95. PubMed ID: 16514014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomics of extreme ecological specialists: multiple convergent evolution but no genetic divergence between ecotypes of Maculinea alcon butterflies.
    Koubínová D; Dincă V; Dapporto L; Vodă R; Suchan T; Vila R; Alvarez N
    Sci Rep; 2017 Oct; 7(1):13752. PubMed ID: 29062104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additive and interactive effects of anthropogenic stressors on an insect herbivore.
    Halsch CA; Zullo DJ; Forister ML
    Proc Biol Sci; 2023 Apr; 290(1996):20222431. PubMed ID: 37015275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variation within a stick insect species associated with community-level traits.
    Sinclair-Waters M; Zamorano LS; Gompert Z; Parchman T; Tyukmaeva V; Hopkins DP; Nosil P
    J Evol Biol; 2024 Mar; ():. PubMed ID: 38513126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel host plant use by a specialist insect depends on geographic variation in both the host and herbivore species.
    Michielini JP; Yi X; Brown LM; Gao SM; Orians C; Crone EE
    Oecologia; 2024 Jan; 204(1):95-105. PubMed ID: 38123786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural genomic variation and migratory behavior in a wild songbird.
    Delmore KE; Van Doren BM; Ullrich K; Curk T; van der Jeugd HP; Liedvogel M
    Evol Lett; 2023 Dec; 7(6):401-412. PubMed ID: 38045725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive genetic effects in interacting species jointly determine the outcome of caterpillar herbivory.
    Gompert Z; Saley T; Philbin C; Yoon SA; Perry E; Sneck ME; Harrison JG; Buerkle CA; Fordyce JA; Nice CC; Dodson CD; Lebeis SL; Lucas LK; Forister ML
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2206052119. PubMed ID: 36037349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disparate genetic variants associated with distinct components of cowpea resistance to the seed beetle Callosobruchus maculatus.
    Messina FJ; Lish AM; Gompert Z
    Theor Appl Genet; 2021 Sep; 134(9):2749-2766. PubMed ID: 34117909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standing genetic variation in laboratory populations of insecticide-susceptible
    Denlinger DS; Hudson SB; Keweshan NS; Gompert Z; Bernhardt SA
    Evol Appl; 2021 May; 14(5):1248-1262. PubMed ID: 34025765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caterpillars on a phytochemical landscape: The case of alfalfa and the Melissa blue butterfly.
    Forister ML; Yoon SA; Philbin CS; Dodson CD; Hart B; Harrison JG; Shelef O; Fordyce JA; Marion ZH; Nice CC; Richards LA; Buerkle CA; Gompert Z
    Ecol Evol; 2020 May; 10(10):4362-4374. PubMed ID: 32489603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Experimental Evolution and Genomics to Understand How Seed Beetles Adapt to a Marginal Host Plant.
    Rêgo A; Chaturvedi S; Springer A; Lish AM; Barton CL; Kapheim KM; Messina FJ; Gompert Z
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32276323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The predictability of genomic changes underlying a recent host shift in Melissa blue butterflies.
    Chaturvedi S; Lucas LK; Nice CC; Fordyce JA; Forister ML; Gompert Z
    Mol Ecol; 2018 Jun; 27(12):2651-2666. PubMed ID: 29617046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sources of Variation in the Gut Microbial Community of Lycaeides melissa Caterpillars.
    Chaturvedi S; Rego A; Lucas LK; Gompert Z
    Sci Rep; 2017 Sep; 7(1):11335. PubMed ID: 28900218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula.
    Stanton-Geddes J; Paape T; Epstein B; Briskine R; Yoder J; Mudge J; Bharti AK; Farmer AD; Zhou P; Denny R; May GD; Erlandson S; Yakub M; Sugawara M; Sadowsky MJ; Young ND; Tiffin P
    PLoS One; 2013; 8(5):e65688. PubMed ID: 23741505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model Legumes: Functional Genomics Tools in Medicago truncatula.
    Cañas LA; Beltrán JP
    Methods Mol Biol; 2018; 1822():11-37. PubMed ID: 30043294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Genomics and Genetic Control of Compound Leaf Development in Medicago truncatula: An Overview.
    Chen R
    Methods Mol Biol; 2018; 1822():197-203. PubMed ID: 30043306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic evidence of genetic variation with pleiotropic effects on caterpillar fitness and plant traits in a model legume.
    Gompert Z; Brady M; Chalyavi F; Saley TC; Philbin CS; Tucker MJ; Forister ML; Lucas LK
    Mol Ecol; 2019 Jun; 28(12):2967-2985. PubMed ID: 31038777
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.