These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 31038918)
41. Supramolecular step in design of nonlinear optical materials: Effect of π...π stacking aggregation on hyperpolarizability. Suponitsky KY; Masunov AE J Chem Phys; 2013 Sep; 139(9):094310. PubMed ID: 24028120 [TBL] [Abstract][Full Text] [Related]
42. Influence of End-Capped Modifications in the Nonlinear Optical Amplitude of Nonfullerene-Based Chromophores with a D-π-A Architecture: A DFT/TDDFT Study. Khalid M; Zafar M; Hussain S; Asghar MA; Khera RA; Imran M; Abookleesh FL; Akram MY; Ullah A ACS Omega; 2022 Jul; 7(27):23532-23548. PubMed ID: 35847337 [TBL] [Abstract][Full Text] [Related]
43. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. Kivala M; Diederich F Acc Chem Res; 2009 Feb; 42(2):235-48. PubMed ID: 19061332 [TBL] [Abstract][Full Text] [Related]
44. Tuning of hyperpolarizability, and one- and two-photon absorption of donor-acceptor and donor-acceptor-acceptor-type intramolecular charge transfer-based sensors. Samanta PK; Alam MM; Misra R; Pati SK Phys Chem Chem Phys; 2019 Aug; 21(31):17343-17355. PubMed ID: 31355378 [TBL] [Abstract][Full Text] [Related]
46. Structure-property analysis of julolidine-based nonlinear optical chromophores for the optimization of microscopic and macroscopic nonlinearity. Wu J; Wang W; Wang N; He J; Deng G; Li Z; Zhang X; Xiao H; Chen K Phys Chem Chem Phys; 2018 Sep; 20(36):23606-23615. PubMed ID: 30191222 [TBL] [Abstract][Full Text] [Related]
53. Push-pull thiophene chromophores for electro-optic applications: from 1D linear to β-branched structures. Rothe C; Neusser D; Hoppe N; Dirnberger K; Vogel W; Gámez-Valenzuela S; López Navarrete JT; Villacampa B; Berroth M; Ruiz Delgado MC; Ludwigs S Phys Chem Chem Phys; 2020 Jan; 22(4):2283-2294. PubMed ID: 31922173 [TBL] [Abstract][Full Text] [Related]
54. NLO properties of metallabenzene-based chromophores: a time-dependent density functional study. Karton A; Iron MA; van der Boom ME; Martin JM J Phys Chem A; 2005 Jun; 109(24):5454-62. PubMed ID: 16839073 [TBL] [Abstract][Full Text] [Related]
55. Exploration of linear and third-order nonlinear optical properties for donor-π-linker-acceptor chromophores derived from ATT-2 based non-fullerene molecule. Sagir M; Mushtaq K; Khalid M; Khan M; Tahir MB; Braga AAC RSC Adv; 2023 Oct; 13(45):31855-31872. PubMed ID: 37920195 [TBL] [Abstract][Full Text] [Related]
56. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores. Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809 [TBL] [Abstract][Full Text] [Related]
57. Realizing the effect of s-block metals on a charge transfer crystal of indol-2-one for enhanced NLO responses with efficient energetic offsets. Hassan AU; Sumrra SH; Mohyuddin A; Nkungli NK; Alhokbany N J Mol Model; 2024 Apr; 30(5):126. PubMed ID: 38581440 [TBL] [Abstract][Full Text] [Related]
58. Linear and Nonlinear Optical Properties of Functional Groups for Conjugated Polymers. Analysis of the Acceptor-Donor Pair Substituents of Benzene: The Case of Guarin CA; Díaz Ponce JA ACS Omega; 2020 Jan; 5(1):518-528. PubMed ID: 31956798 [TBL] [Abstract][Full Text] [Related]