BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 31038924)

  • 1. III-V Integration on Si(100): Vertical Nanospades.
    Güniat L; Martí-Sánchez S; Garcia O; Boscardin M; Vindice D; Tappy N; Friedl M; Kim W; Zamani M; Francaviglia L; Balgarkashi A; Leran JB; Arbiol J; Fontcuberta I Morral A
    ACS Nano; 2019 May; 13(5):5833-5840. PubMed ID: 31038924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Yield of GaAs Nanowire Arrays on Si Mediated by the Pinning and Contact Angle of Ga.
    Russo-Averchi E; Vukajlovic Plestina J; Tütüncüoglu G; Matteini F; Dalmau-Mallorquí A; de la Mata M; Rüffer D; Potts HA; Arbiol J; Conesa-Boj S; Fontcuberta i Morral A
    Nano Lett; 2015 May; 15(5):2869-74. PubMed ID: 25894762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Mapping of Light Emission in Nanospade-Based InGaAs Quantum Wells Integrated on Si(100): Implications for Dual Light-Emitting Devices.
    Güniat L; Tappy N; Balgarkashi A; Charvin T; Lemerle R; Morgan N; Dede D; Kim W; Piazza V; Leran JB; Tizei LHG; Kociak M; Fontcuberta I Morral A
    ACS Appl Nano Mater; 2022 Apr; 5(4):5508-5515. PubMed ID: 35492438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon.
    Russo-Averchi E; Heiss M; Michelet L; Krogstrup P; Nygard J; Magen C; Morante JR; Uccelli E; Arbiol J; Fontcuberta i Morral A
    Nanoscale; 2012 Mar; 4(5):1486-90. PubMed ID: 22314270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the Shadowing Effect on the Crystal Structure of Patterned Self-Catalyzed GaAs Nanowires.
    Schroth P; Al Humaidi M; Feigl L; Jakob J; Al Hassan A; Davtyan A; Küpers H; Tahraoui A; Geelhaar L; Pietsch U; Baumbach T
    Nano Lett; 2019 Jul; 19(7):4263-4271. PubMed ID: 31150261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferred growth direction of III-V nanowires on differently oriented Si substrates.
    Zeng H; Yu X; Fonseka HA; Boras G; Jurczak P; Wang T; Sanchez AM; Liu H
    Nanotechnology; 2020 Nov; 31(47):475708. PubMed ID: 32885789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Si Doping of Vapor-Liquid-Solid GaAs Nanowires: n-Type or p-Type?
    Hijazi H; Monier G; Gil E; Trassoudaine A; Bougerol C; Leroux C; Castellucci D; Robert-Goumet C; Hoggan PE; André Y; Isik Goktas N; LaPierre RR; Dubrovskii VG
    Nano Lett; 2019 Jul; 19(7):4498-4504. PubMed ID: 31203632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bistability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs nanowires.
    Kim W; Dubrovskii VG; Vukajlovic-Plestina J; Tütüncüoglu G; Francaviglia L; Güniat L; Potts H; Friedl M; Leran JB; Fontcuberta I Morral A
    Nano Lett; 2018 Jan; 18(1):49-57. PubMed ID: 29257895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalyst-free selective-area epitaxy of GaAs nanowires by metal-organic chemical vapor deposition using triethylgallium.
    Kim H; Ren D; Farrell AC; Huffaker DL
    Nanotechnology; 2018 Feb; 29(8):085601. PubMed ID: 29300185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foreign-catalyst-free GaSb nanowires directly grown on cleaved Si substrates by molecular-beam epitaxy.
    Wen L; Pan D; Liao D; Zhao J
    Nanotechnology; 2020 Apr; 31(15):155601. PubMed ID: 31783375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroepitaxial growth of vertical GaAs nanowires on Si(111) substrates by metal-organic chemical vapor deposition.
    Bao XY; Soci C; Susac D; Bratvold J; Aplin DP; Wei W; Chen CY; Dayeh SA; Kavanagh KL; Wang D
    Nano Lett; 2008 Nov; 8(11):3755-60. PubMed ID: 18954121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Rotational Twin Boundaries and Lattice Mismatch on III-V Nanowire Growth.
    Steidl M; Koppka C; Winterfeld L; Peh K; Galiana B; Supplie O; Kleinschmidt P; Runge E; Hannappel T
    ACS Nano; 2017 Sep; 11(9):8679-8689. PubMed ID: 28881138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation Mechanism of Twinning Superlattices in Doped GaAs Nanowires.
    Isik Goktas N; Sokolovskii A; Dubrovskii VG; LaPierre RR
    Nano Lett; 2020 May; 20(5):3344-3351. PubMed ID: 32239956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillations of As Concentration and Electron-to-Hole Ratio in Si-Doped GaAs Nanowires.
    Dubrovskii VG; Hijazi H
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32349326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate.
    Tomioka K; Kobayashi Y; Motohisa J; Hara S; Fukui T
    Nanotechnology; 2009 Apr; 20(14):145302. PubMed ID: 19420521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Five-Step Heteroepitaxial Growth of GaAs Nanowires on Silicon Substrates and the Twin Formation Mechanism.
    Yao M; Sheng C; Ge M; Chi CY; Cong S; Nakano A; Dapkus PD; Zhou C
    ACS Nano; 2016 Feb; 10(2):2424-35. PubMed ID: 26831573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-catalyzed VLS grown InAs nanowires with twinning superlattices.
    Grap T; Rieger T; Blömers Ch; Schäpers T; Grützmacher D; Lepsa MI
    Nanotechnology; 2013 Aug; 24(33):335601. PubMed ID: 23881182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid axial and radial Si-GaAs heterostructures in nanowires.
    Conesa-Boj S; Dunand S; Russo-Averchi E; Heiss M; Ruffer D; Wyrsch N; Ballif C; Fontcuberta i Morral A
    Nanoscale; 2013 Oct; 5(20):9633-9. PubMed ID: 23824168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular beam epitaxy of InAs nanowires in SiO
    Vukajlovic-Plestina J; Dubrovskii VG; Tütüncuoǧlu G; Potts H; Ricca R; Meyer F; Matteini F; Leran JB; I Morral AF
    Nanotechnology; 2016 Nov; 27(45):455601. PubMed ID: 27698287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical III-V nanowire device integration on Si(100).
    Borg M; Schmid H; Moselund KE; Signorello G; Gignac L; Bruley J; Breslin C; Das Kanungo P; Werner P; Riel H
    Nano Lett; 2014; 14(4):1914-20. PubMed ID: 24628529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.