These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31038936)
1. Kinetic Study on Clogging of a Geothermal Pumping Well Triggered by Mixing-Induced Biogeochemical Reactions. Burté L; Cravotta CA; Bethencourt L; Farasin J; Pédrot M; Dufresne A; Gérard MF; Baranger C; Le Borgne T; Aquilina L Environ Sci Technol; 2019 May; 53(10):5848-5857. PubMed ID: 31038936 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of well iron clogging in groundwater heat pump systems: Insights from video imaging, hydrogeochemical analysis, and geochemical modeling. Shi M; Yang Y; Wu Y; Wang Q; Gao L; Lu Y J Environ Manage; 2024 Aug; 365():121535. PubMed ID: 38917542 [TBL] [Abstract][Full Text] [Related]
3. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. Nitzsche KS; Weigold P; Lösekann-Behrens T; Kappler A; Behrens S Chemosphere; 2015 Nov; 138():47-59. PubMed ID: 26037816 [TBL] [Abstract][Full Text] [Related]
4. Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic considerations and product characterization. Katsoyiannis IA; Zouboulis AI Water Res; 2004 Apr; 38(7):1922-32. PubMed ID: 15026247 [TBL] [Abstract][Full Text] [Related]
5. As(III) oxidation by MnO Gude JCJ; Rietveld LC; van Halem D Water Res; 2017 Mar; 111():41-51. PubMed ID: 28040540 [TBL] [Abstract][Full Text] [Related]
6. Microbial communities and biogenic Mn-oxides in an on-site biofiltration system for cold Fe-(II)- and Mn(II)-rich groundwater treatment. Dangeti S; McBeth JM; Roshani B; Vyskocil JM; Rindall B; Chang W Sci Total Environ; 2020 Mar; 710():136386. PubMed ID: 31927292 [TBL] [Abstract][Full Text] [Related]
7. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism. Cheng Y; Zhang S; Huang T; Li Y Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill. Pleasant S; O'Donnell A; Powell J; Jain P; Townsend T Sci Total Environ; 2014 Jul; 485-486():31-40. PubMed ID: 24704954 [TBL] [Abstract][Full Text] [Related]
9. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions. Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402 [TBL] [Abstract][Full Text] [Related]
10. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems. Bai Y; Yang T; Liang J; Qu J Water Res; 2016 Jul; 98():119-27. PubMed ID: 27088246 [TBL] [Abstract][Full Text] [Related]
11. Biological Low-pH Mn(II) Oxidation in a Manganese Deposit Influenced by Metal-Rich Groundwater. Bohu T; Akob DM; Abratis M; Lazar CS; Küsel K Appl Environ Microbiol; 2016 May; 82(10):3009-3021. PubMed ID: 26969702 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneous oxidation of Fe(II) on ferric oxide at neutral pH and a low partial pressure of O2. Park U; Dempsey BA Environ Sci Technol; 2005 Sep; 39(17):6494-500. PubMed ID: 16190204 [TBL] [Abstract][Full Text] [Related]
13. Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe-Mn oxides. Bai Y; Jefferson WA; Liang J; Yang T; Qu J J Environ Sci (China); 2017 Apr; 54():126-134. PubMed ID: 28391920 [TBL] [Abstract][Full Text] [Related]
14. Revealing the microbial community structure of clogging materials in dewatering wells differing in physico-chemical parameters in an open-cast mining area. Wang J; Sickinger M; Ciobota V; Herrmann M; Rasch H; Rösch P; Popp J; Küsel K Water Res; 2014 Oct; 63():222-33. PubMed ID: 25010562 [TBL] [Abstract][Full Text] [Related]
15. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
16. Microbial oxidation and reduction of manganese: consequences in groundwater and applications. Gounot AM FEMS Microbiol Rev; 1994 Aug; 14(4):339-49. PubMed ID: 7917421 [TBL] [Abstract][Full Text] [Related]
17. Manganese oxidation induced by water table fluctuations in a sand column. Farnsworth CE; Voegelin A; Hering JG Environ Sci Technol; 2012 Jan; 46(1):277-84. PubMed ID: 22126514 [TBL] [Abstract][Full Text] [Related]
18. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer. Hellal J; Guédron S; Huguet L; Schäfer J; Laperche V; Joulian C; Lanceleur L; Burnol A; Ghestem JP; Garrido F; Battaglia-Brunet F J Contam Hydrol; 2015 Sep; 180():56-68. PubMed ID: 26275395 [TBL] [Abstract][Full Text] [Related]
19. Manganese, Arsenic, and Carbonate Interactions in Model Oxic Groundwater Systems. Schaefer MV; Plaganas M; Abernathy MJ; Aiken ML; Garniwan A; Lee I; Ying SC Environ Sci Technol; 2020 Sep; 54(17):10621-10629. PubMed ID: 32786605 [TBL] [Abstract][Full Text] [Related]
20. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments. Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]