These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31038967)

  • 1. Hydroxyl Groups on the Graphene Surfaces Facilitate Ice Nucleation.
    Xue H; Lu Y; Geng H; Dong B; Wu S; Fan Q; Zhang Z; Li X; Zhou X; Wang J
    J Phys Chem Lett; 2019 May; 10(10):2458-2462. PubMed ID: 31038967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the critical nucleus size for ice formation with graphene oxide nanosheets.
    Bai G; Gao D; Liu Z; Zhou X; Wang J
    Nature; 2019 Dec; 576(7787):437-441. PubMed ID: 31853083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous nucleation of ice on carbon surfaces.
    Lupi L; Hudait A; Molinero V
    J Am Chem Soc; 2014 Feb; 136(8):3156-64. PubMed ID: 24495074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of Oxidation Degree and Size on the Ice Nucleation Efficiency of Graphene Oxide.
    Bai G; Zhang H
    J Phys Chem Lett; 2022 Apr; 13(13):2950-2955. PubMed ID: 35343693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic Steps Induce the Aligned Growth of Ice Crystals on Graphite Surfaces.
    Zhang Z; Ying Y; Xu M; Zhang C; Rao Z; Ke S; Zhou Y; Huang H; Fei L
    Nano Lett; 2020 Nov; 20(11):8112-8119. PubMed ID: 33044079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry and microphysics of polar stratospheric clouds and cirrus clouds.
    Zondlo MA; Hudson PK; Prenni AJ; Tolbert MA
    Annu Rev Phys Chem; 2000; 51():473-99. PubMed ID: 11031290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of homogeneous crystal nucleation in water droplets on their radii and its implication for modeling the formation of ice particles in cirrus clouds.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2017 Aug; 19(30):20075-20081. PubMed ID: 28725886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations.
    Glatz B; Sarupria S
    Langmuir; 2018 Jan; 34(3):1190-1198. PubMed ID: 29020452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice.
    Qiu Y; Odendahl N; Hudait A; Mason R; Bertram AK; Paesani F; DeMott PJ; Molinero V
    J Am Chem Soc; 2017 Mar; 139(8):3052-3064. PubMed ID: 28135412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose Nanocrystals Facilitate Needle-like Ice Crystal Growth and Modulate Molecular Targeted Ice Crystal Nucleation.
    Hou Y; Sun X; Dou M; Lu C; Liu J; Rao W
    Nano Lett; 2021 Jun; 21(11):4868-4877. PubMed ID: 33819045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silica as a Model Ice-Nucleating Particle to Study the Effects of Crystallinity, Porosity, and Low-Density Surface Functional Groups on Immersion Freezing.
    Marak KE; Roebuck JH; Chong E; Poitras H; Freedman MA
    J Phys Chem A; 2022 Sep; 126(35):5965-5973. PubMed ID: 36027049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of ice nucleation on water repellent surfaces.
    Alizadeh A; Yamada M; Li R; Shang W; Otta S; Zhong S; Ge L; Dhinojwala A; Conway KR; Bahadur V; Vinciquerra AJ; Stephens B; Blohm ML
    Langmuir; 2012 Feb; 28(6):3180-6. PubMed ID: 22235939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states.
    Metya AK; Singh JK; Müller-Plathe F
    Phys Chem Chem Phys; 2016 Sep; 18(38):26796-26806. PubMed ID: 27711467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of Ice Nucleation by Kaolinite (001) with Rigid and Flexible Surfaces.
    Zielke SA; Bertram AK; Patey GN
    J Phys Chem B; 2016 Mar; 120(8):1726-34. PubMed ID: 26524230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of stacking disorder in ice nucleation.
    Lupi L; Hudait A; Peters B; Grünwald M; Gotchy Mullen R; Nguyen AH; Molinero V
    Nature; 2017 Nov; 551(7679):218-222. PubMed ID: 29120424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent kinetic pathways of heterogeneous ice nucleation competing between classical and non-classical nucleation.
    Li C; Liu Z; Goonetilleke EC; Huang X
    Nat Commun; 2021 Aug; 12(1):4954. PubMed ID: 34400646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential Sites for Ice Nucleation on Aluminosilicate Clay Minerals and Related Materials.
    Freedman MA
    J Phys Chem Lett; 2015 Oct; 6(19):3850-8. PubMed ID: 26722881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Structure-Activity Relationship Studies on Alkane Chemistry Tuning Ice Nucleation.
    Bai G; Li H; Qin S; Gao D
    J Phys Chem Lett; 2022 Dec; 13(49):11564-11570. PubMed ID: 36475710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.