These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31039209)

  • 1. Six different football shoes, one playing surface and the weather; Assessing variation in shoe-surface traction over one season of elite football.
    Thomson A; Whiteley R; Wilson M; Bleakley C
    PLoS One; 2019; 14(4):e0216364. PubMed ID: 31039209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Torsional injuries of the lower limb: an analysis of the frictional torque between different types of football turf and the shoe outsole.
    Smeets K; Jacobs P; Hertogs R; Luyckx JP; Innocenti B; Corten K; Ekstrand J; Bellemans J
    Br J Sports Med; 2012 Dec; 46(15):1078-83. PubMed ID: 22842236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Football playing surface and shoe design affect rotational traction.
    Villwock MR; Meyer EG; Powell JW; Fouty AJ; Haut RC
    Am J Sports Med; 2009 Mar; 37(3):518-25. PubMed ID: 19168808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Higher shoe-surface interaction is associated with doubling of lower extremity injury risk in football codes: a systematic review and meta-analysis.
    Thomson A; Whiteley R; Bleakley C
    Br J Sports Med; 2015 Oct; 49(19):1245-52. PubMed ID: 26036677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is there a relationship between ground and climatic conditions and injuries in football?
    Orchard J
    Sports Med; 2002; 32(7):419-32. PubMed ID: 12015804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction: Six different football shoes, one playing surface and the weather; Assessing variation in shoe-surface traction over one season of elite football.
    Thomson A; Whiteley R; Wilson M; Bleakley C
    PLoS One; 2019; 14(6):e0218865. PubMed ID: 31216330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of ambient temperature on the shoe-surface interface release coefficient.
    Torg JS; Stilwell G; Rogers K
    Am J Sports Med; 1996; 24(1):79-82. PubMed ID: 8638758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and assessment of a device and method for studying the mechanical interactions between shoes and playing surfaces in situ at loads and rates generated by elite athletes.
    Kent R; Crandall J; Forman J; Lessley D; Lau A; Garson C
    Sports Biomech; 2012 Sep; 11(3):414-29. PubMed ID: 23072051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotational and peak torque stiffness of rugby shoes.
    Ballal MS; Usuelli FG; Montrasio UA; Molloy A; La Barbera L; Villa T; Banfi G
    Foot (Edinb); 2014 Sep; 24(3):107-10. PubMed ID: 25095720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical analysis of the plantar surface of soccer shoes.
    Majid F; Bader DL
    Proc Inst Mech Eng H; 1993; 207(2):93-101. PubMed ID: 8280319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects on traction of outsole composition and hardnesses of basketball shoes and three types of playing surfaces.
    Rheinstein DJ; Morehouse CA; Niebel BW
    Med Sci Sports; 1978; 10(4):282-8. PubMed ID: 750848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of synthetic playing surfaces, the shoe-surface interface, and lower extremity injuries in athletes.
    Taylor SA; Fabricant PD; Khair MM; Haleem AM; Drakos MC
    Phys Sportsmed; 2012 Nov; 40(4):66-72. PubMed ID: 23306416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotational stiffness of American football shoes affects ankle biomechanics and injury severity.
    Button KD; Braman JE; Davison MA; Wei F; Schaeffer MC; Haut RC
    J Biomech Eng; 2015 Jun; 137(6):061004. PubMed ID: 25751589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of two football stud configurations on biomechanical characteristics of single-leg landing and cutting movements on infilled synthetic turf.
    Brock E; Zhang S; Milner C; Liu X; Brosnan JT; Sorochan JC
    Sports Biomech; 2014 Nov; 13(4):362-79. PubMed ID: 25301011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turf-toe: a shoe-surface related football injury.
    Bowers KD; Martin RB
    Med Sci Sports; 1976; 8(2):81-3. PubMed ID: 957935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does soccer cleat design influence the rotational interaction with the playing surface?
    Galbusera F; Tornese DZ; Anasetti F; Bersini S; Volpi P; La Barbera L; Villa T
    Sports Biomech; 2013 Sep; 12(3):293-301. PubMed ID: 24245054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Footwear traction and lower extremity joint loading.
    Wannop JW; Worobets JT; Stefanyshyn DJ
    Am J Sports Med; 2010 Jun; 38(6):1221-8. PubMed ID: 20348282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on three athletic movements.
    Worobets J; Wannop JW
    Sports Biomech; 2015 Sep; 14(3):351-60. PubMed ID: 26517604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peak torque and rotational stiffness developed at the shoe-surface interface: the effect of shoe type and playing surface.
    Livesay GA; Reda DR; Nauman EA
    Am J Sports Med; 2006 Mar; 34(3):415-22. PubMed ID: 16399930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical interactions between an American football cleat and playing surfaces in-situ at loads and rates generated by elite athletes: a comparison of playing surfaces.
    Kent R; Forman JL; Crandall J; Lessley D
    Sports Biomech; 2015 Mar; 14(1):1-17. PubMed ID: 25900121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.