These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 31039395)

  • 1. Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing.
    Bisht DS; Bhatia V; Bhattacharya R
    Semin Cell Dev Biol; 2019 Dec; 96():65-76. PubMed ID: 31039395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR Crops: Plant Genome Editing Toward Disease Resistance.
    Langner T; Kamoun S; Belhaj K
    Annu Rev Phytopathol; 2018 Aug; 56():479-512. PubMed ID: 29975607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing for resistance against plant pests and pathogens.
    Rato C; Carvalho MF; Azevedo C; Oblessuc PR
    Transgenic Res; 2021 Aug; 30(4):427-459. PubMed ID: 34143358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-specific nucleases as tools for enhancing disease resistance in crops.
    Nekrasov V
    Transgenic Res; 2019 Aug; 28(Suppl 2):75-80. PubMed ID: 31321687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected
    Barka GD; Lee J
    Bioengineered; 2022 Jun; 13(6):14646-14666. PubMed ID: 35891620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants.
    Zaidi SS; Mahas A; Vanderschuren H; Mahfouz MM
    Genome Biol; 2020 Nov; 21(1):289. PubMed ID: 33256828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome editing for plant disease resistance: applications and perspectives.
    Yin K; Qiu JL
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180322. PubMed ID: 30967029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From bacterial battles to CRISPR crops; progress towards agricultural applications of genome editing.
    Bryant JA
    Emerg Top Life Sci; 2019 Nov; 3(6):687-693. PubMed ID: 32915213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker.
    Jia H; Zhang Y; Orbović V; Xu J; White FF; Jones JB; Wang N
    Plant Biotechnol J; 2017 Jul; 15(7):817-823. PubMed ID: 27936512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects.
    Ahmad S; Wei X; Sheng Z; Hu P; Tang S
    Brief Funct Genomics; 2020 Jan; 19(1):26-39. PubMed ID: 31915817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9-Mediated Multiplex Genome Editing of the
    Sun Q; Lin L; Liu D; Wu D; Fang Y; Wu J; Wang Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30208656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global developments of genome editing in agriculture.
    Ricroch A
    Transgenic Res; 2019 Aug; 28(Suppl 2):45-52. PubMed ID: 31321682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production.
    Manzoor S; Nabi SU; Rather TR; Gani G; Mir ZA; Wani AW; Ali S; Tyagi A; Manzar N
    Front Genome Ed; 2024; 6():1399051. PubMed ID: 38988891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering broad-spectrum resistance to cotton leaf curl disease by CRISPR-Cas9 based multiplex editing in plants.
    Mubarik MS; Wang X; Khan SH; Ahmad A; Khan Z; Amjid MW; Razzaq MK; Ali Z; Azhar MT
    GM Crops Food; 2021 Dec; 12(2):647-658. PubMed ID: 34124996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of novel resistance genes using mutation and targeted gene editing.
    Gal-On A; Fuchs M; Gray S
    Curr Opin Virol; 2017 Oct; 26():98-103. PubMed ID: 28802147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management.
    Karmakar S; Das P; Panda D; Xie K; Baig MJ; Molla KA
    Plant Sci; 2022 Oct; 323():111376. PubMed ID: 35835393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision Breeding Made Real with CRISPR: Illustration through Genetic Resistance to Pathogens.
    Veillet F; Durand M; Kroj T; Cesari S; Gallois JL
    Plant Commun; 2020 Sep; 1(5):100102. PubMed ID: 33367260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.