These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31039463)

  • 1. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries.
    He K; Zhang ZY; Alai L; Zhang FS
    J Hazard Mater; 2019 Aug; 375():43-51. PubMed ID: 31039463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-fast recovery of cathode materials from spent LiFePO
    Zhu X; Chen C; Guo Q; Liu M; Zhang Y; Sun Z; Song H
    Waste Manag; 2023 Jul; 166():70-77. PubMed ID: 37156188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.
    Zeng X; Li J
    J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient separation of aluminum foil from mixed-type spent lithium-ion power batteries.
    Hu Z; Zhu N; Wei X; Zhang S; Li F; Wu P; Chen Y
    J Environ Manage; 2021 Nov; 298():113500. PubMed ID: 34388548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery.
    Xu R; Lei S; Wang T; Yi C; Sun W; Yang Y
    Waste Manag; 2023 Jul; 167():135-140. PubMed ID: 37262939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel pulsated pneumatic separation with variable-diameter structure and its application in the recycling spent lithium-ion batteries.
    Zhu X; Zhang C; Feng P; Yang X; Yang X
    Waste Manag; 2021 Jul; 131():20-30. PubMed ID: 34091235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of organic pollutants accompanied by the ultrasonic separation of the spent lithium-ion battery cathode materials.
    Huang Y; Sun M; Xu C; Hu H; Zhu S; He W
    Waste Manag Res; 2024 Jan; 42(1):74-80. PubMed ID: 37102342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments.
    Wu Z; Zhu H; Bi H; He P; Gao S
    Waste Manag Res; 2021 Apr; 39(4):607-619. PubMed ID: 33200691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis and physical separation for the recovery of spent LiFePO
    Zhong X; Liu W; Han J; Jiao F; Qin W; Liu T; Zhao C
    Waste Manag; 2019 Apr; 89():83-93. PubMed ID: 31079762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmentally-friendly lithium recycling from a spent organic li-ion battery.
    Renault S; Brandell D; Edström K
    ChemSusChem; 2014 Oct; 7(10):2859-67. PubMed ID: 25170568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding.
    Wang H; Liu J; Bai X; Wang S; Yang D; Fu Y; He Y
    Waste Manag; 2019 May; 91():89-98. PubMed ID: 31203946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.
    Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD
    Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical review of current technologies for the liberation of electrode materials from foils in the recycling process of spent lithium-ion batteries.
    He Y; Yuan X; Zhang G; Wang H; Zhang T; Xie W; Li L
    Sci Total Environ; 2021 Apr; 766():142382. PubMed ID: 33183828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries.
    Wang M; Tan Q; Liu L; Li J
    J Hazard Mater; 2019 Dec; 380():120846. PubMed ID: 31279946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of cathode particles and aluminum current foil in Lithium-Ion battery by high-voltage pulsed discharge Part I: Experimental investigation.
    Tokoro C; Lim S; Teruya K; Kondo M; Mochidzuki K; Namihira T; Kikuchi Y
    Waste Manag; 2021 Apr; 125():58-66. PubMed ID: 33684665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive review and comparison on pretreatment of spent lithium-ion battery.
    Gao T; Dai T; Fan N; Han Z; Gao X
    J Environ Manage; 2024 Jul; 363():121314. PubMed ID: 38843731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.