These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31039476)

  • 1. Novel approach to microscopic characterization of cryo formation in air voids of concrete.
    Azarsa P; Gupta R
    Micron; 2019 Jul; 122():21-27. PubMed ID: 31039476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation Mechanism and Numerical Simulation of Pervious Concrete under Salt Freezing-Thawing Cycle.
    Xiang J; Liu H; Lu H; Gui F
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-thaw durability of air-entrained concrete.
    Shang HS; Yi TH
    ScientificWorldJournal; 2013; 2013():650791. PubMed ID: 23576906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Study on Mechanical Properties and Pore Structure Deterioration of Concrete under Freeze-Thaw Cycles.
    Zhang K; Zhou J; Yin Z
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties and Applications of Geopolymer Composites: A Review Study of Mechanical and Microstructural Properties.
    Saeed A; Najm HM; Hassan A; Sabri MMS; Qaidi S; Mashaan NS; Ansari K
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.
    Shang HS; Cao WQ; Wang B
    ScientificWorldJournal; 2014; 2014():923032. PubMed ID: 24895671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Evaluation of the Concrete Damage and Pore Characteristics under Salt-Freezing Cycles.
    Zhou J; Wang G; Xu J
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-Thaw Effect on Road Concrete Containing Blast Furnace Slag: NMR Relaxometry Investigations.
    Nicula LM; Corbu O; Ardelean I; Sandu AV; Iliescu M; Simedru D
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the Internal Humidity of Concrete on Frost Resistance and Air Void Structure under Different Low Temperature Conditions.
    Ge X; Ke M; Liu W; Wang H; Lu C; Mei G; Yang H
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Cyclic Freeze-Thaw on the Steel Bar Reinforced New-To-Old Concrete Interface.
    Luo T; Zhang C; Xu X; Shen Y; Jia H; Sun C
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32164302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete.
    Kim JH; Park SJ; Yim HJ
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Freeze-Thaw Cycles on the Long-Term Performance of Concrete Pavement and Related Improvement Measures: A Review.
    Luo S; Bai T; Guo M; Wei Y; Ma W
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Study on Freezing and Thawing Cycles of Shrinkage-Compensating Concrete with Double Expansive Agents.
    Guo J; Guo T; Zhang S; Lu Y
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32326462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embolism formation during freezing in the wood of Picea abies.
    Mayr S; Cochard H; Améglio T; Kikuta SB
    Plant Physiol; 2007 Jan; 143(1):60-7. PubMed ID: 17041033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Acoustic Emission Signals Recorded during Freeze-Thaw Cycling of Concrete.
    Topolář L; Kocáb D; Pazdera L; Vymazal T
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33807866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Varied Waste Ceramic Fillers on the Resistance of Concrete to Freeze-Thaw Cycles.
    Katzer J; Halbiniak J; Langier B; Major M; Major I
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze-Thaw Resistance and Air-Void Analysis of Concrete with Recycled Glass-Pozzolan Using X-ray Micro-Tomography.
    Krstic M; Davalos JF; Rossi E; Figueiredo SC; Copuroglu O
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Freeze-Thaw Durability of Concrete through Ice Recrystallization Inhibition by Poly(vinyl alcohol).
    Qu Z; Guo S; Sproncken CCM; Surís-Valls R; Yu Q; Voets IK
    ACS Omega; 2020 Jun; 5(22):12825-12831. PubMed ID: 32548466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Multiple Freeze-Thaw Cycles on Biochemical and Physical Quality Changes of White Shrimp (Penaeus vannamei) Treated with Lysine and Sodium Bicarbonate.
    Wachirasiri K; Wanlapa S; Uttapap D; Puttanlek C; Rungsardthong V
    J Food Sci; 2019 Jul; 84(7):1784-1790. PubMed ID: 31218686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Character, distribution and biological implications of ice crystallization in cryopreserved rabbit ovarian tissue revealed by cryo-scanning electron microscopy.
    Gosden RG; Yin H; Bodine RJ; Morris GJ
    Hum Reprod; 2010 Feb; 25(2):470-8. PubMed ID: 19933523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.