These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 31039553)
1. Electronic states of pseudospin-1 fermions in [Formula: see text] lattice ribbons in a magnetic field. Bugaiko OV; Oriekhov DO J Phys Condens Matter; 2019 Aug; 31(32):325501. PubMed ID: 31039553 [TBL] [Abstract][Full Text] [Related]
2. Quantum transport through the edge states of zigzag phosphorene nanoribbons in presence of a single point defect: analytic Green's function method. Amini M; Soltani M J Phys Condens Matter; 2019 May; 31(21):215301. PubMed ID: 30794998 [TBL] [Abstract][Full Text] [Related]
3. Edge modes in zigzag and armchair ribbons of monolayer MoS Rostami H; Asgari R; Guinea F J Phys Condens Matter; 2016 Dec; 28(49):495001. PubMed ID: 27731311 [TBL] [Abstract][Full Text] [Related]
4. Electronic band structures of graphene nanoribbons with self-passivating edge reconstructions. Tung Nguyen L; Huy Pham C; Lien Nguyen V J Phys Condens Matter; 2011 Jul; 23(29):295503. PubMed ID: 21737866 [TBL] [Abstract][Full Text] [Related]
5. Current distribution and group velocities for electronic states onα-T3lattice ribbons in a magnetic field. Oriekhov DO; Voronov S J Phys Condens Matter; 2021 Jun; 33(28):. PubMed ID: 33930874 [TBL] [Abstract][Full Text] [Related]
6. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons. Wu W; Lu P; Zhang Z; Guo W ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765 [TBL] [Abstract][Full Text] [Related]
7. Unscreened Coulomb interactions and the quantum spin Hall phase in neutral zigzag graphene ribbons. Zarea M; Büsser C; Sandler N Phys Rev Lett; 2008 Nov; 101(19):196804. PubMed ID: 19113295 [TBL] [Abstract][Full Text] [Related]
8. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons. Owens FJ J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of electric field influence on the quantum wells with different boundary conditions.: I. Energy spectrum, quantum information entropy and polarization. Olendski O Ann Phys; 2015 Apr; 527(3-4):278-295. PubMed ID: 25914413 [TBL] [Abstract][Full Text] [Related]
10. Tailoring plasmon excitations in [Formula: see text] armchair nanoribbons. Iurov A; Zhemchuzhna L; Gumbs G; Huang D; Fekete P; Anwar F; Dahal D; Weekes N Sci Rep; 2021 Oct; 11(1):20577. PubMed ID: 34663854 [TBL] [Abstract][Full Text] [Related]
11. Electronic and optical properties of Janus black arsenic-phosphorus AsP quantum dots under magnetic field. Yan X; Ke Q; Cai Y Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35316792 [TBL] [Abstract][Full Text] [Related]
12. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons. Huang YC; Chang CP; Lin MF Nanotechnology; 2007 Dec; 18(49):495401. PubMed ID: 20442470 [TBL] [Abstract][Full Text] [Related]
13. Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots. Saleem Y; Najera Baldo L; Delgado A; Szulakowska L; Hawrylak P J Phys Condens Matter; 2019 Jul; 31(30):305503. PubMed ID: 30812024 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of a quasiparticle in the α-T Biswas T; Kanti Ghosh T J Phys Condens Matter; 2018 Feb; 30(7):075301. PubMed ID: 29355111 [TBL] [Abstract][Full Text] [Related]
15. Physical properties and electronic band structure of noncentrosymmetric Th7Co3 superconductor. Sahakyan M; Tran VH J Phys Condens Matter; 2016 May; 28(20):205701. PubMed ID: 27120582 [TBL] [Abstract][Full Text] [Related]
16. Spectral functions of one-dimensional systems with correlated disorder. Khan NA; Viana Parente Lopes JM; Santos Pires JP; Lopes Dos Santos JMB J Phys Condens Matter; 2019 May; 31(17):175501. PubMed ID: 30703754 [TBL] [Abstract][Full Text] [Related]
17. Theory of nitrogen doping of carbon nanoribbons: edge effects. Jiang J; Turnbull J; Lu W; Boguslawski P; Bernholc J J Chem Phys; 2012 Jan; 136(1):014702. PubMed ID: 22239795 [TBL] [Abstract][Full Text] [Related]
18. Orbital Edge States in a Photonic Honeycomb Lattice. Milićević M; Ozawa T; Montambaux G; Carusotto I; Galopin E; Lemaître A; Le Gratiet L; Sagnes I; Bloch J; Amo A Phys Rev Lett; 2017 Mar; 118(10):107403. PubMed ID: 28339267 [TBL] [Abstract][Full Text] [Related]
19. Semirelativity in semiconductors: a review. Zawadzki W J Phys Condens Matter; 2017 Sep; 29(37):373004. PubMed ID: 28608783 [TBL] [Abstract][Full Text] [Related]
20. Edge states in rationally terminated honeycomb structures. Fefferman CL; Fliss S; Weinstein MI Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2212310119. PubMed ID: 36378646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]