These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31039553)

  • 21. Optical properties of two-dimensional zigzag and armchair graphyne nanoribbon semiconductor.
    Asadpour M; Jafari M; Asadpour M; Jafari M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():380-4. PubMed ID: 25576934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic and optical responses of quasi-one-dimensional phosphorene nanoribbons to strain and electric field.
    Zhang L; Hao Y
    Sci Rep; 2018 Apr; 8(1):6089. PubMed ID: 29666507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy gaps in graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic properties of nanotube-ribbon hybrid systems.
    Li TS; Chang SC; Lien JY; Lin MF
    Nanotechnology; 2008 Mar; 19(10):105703. PubMed ID: 21817711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons.
    Kumar SB; Jalil MB; Tan SG; Liang G
    J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs.
    Bhattacharyya S; Kawazoe Y; Singhl AK
    J Nanosci Nanotechnol; 2012 Mar; 12(3):1899-902. PubMed ID: 22754996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The electronic properties of graphene and graphene ribbons under simple shear strain.
    Sena SH; Pereira JM; Farias GA; Peeters FM; Costa Filho RN
    J Phys Condens Matter; 2012 Sep; 24(37):375301. PubMed ID: 22890024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of electric field influence on the quantum wells with different boundary conditions: II. Thermodynamic properties.
    Olendski O
    Ann Phys; 2015 Apr; 527(3-4):296-310. PubMed ID: 25914414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Giant magnetic anisotropy and robust quantum anomalous Hall effect in boron-doped graphene with Re-adsorption.
    Zhang KC; Li YF; Liu Y; Zhu Y
    J Phys Condens Matter; 2018 Apr; 30(14):145001. PubMed ID: 29465040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field.
    Saroka VA; Batrakov KG; Demin VA; Chernozatonskii LA
    J Phys Condens Matter; 2015 Apr; 27(14):145305. PubMed ID: 25791088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energetics and Electronic Structure of h-BN Nanoflakes.
    Yamanaka A; Okada S
    Sci Rep; 2016 Aug; 6():30653. PubMed ID: 27481626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gd
    Muthuselvam IP; Nehru R; Babu KR; Saranya K; Kaul SN; Chen SM; Chen WT; Liu Y; Guo GY; Xiu F; Sankar R
    J Phys Condens Matter; 2019 Jul; 31(28):285802. PubMed ID: 30939461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anomalous Anderson localization behaviors in disordered pseudospin systems.
    Fang A; Zhang ZQ; Louie SG; Chan CT
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4087-4092. PubMed ID: 28377516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contrasting properties of hydrogenated and protonated single-layer h-BN from first-principles.
    Zou J; Tang LM; Chen K; Feng Y
    J Phys Condens Matter; 2018 Feb; 30(6):065001. PubMed ID: 29256870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic properties of the biphenylene sheet and its one-dimensional derivatives.
    Hudspeth MA; Whitman BW; Barone V; Peralta JE
    ACS Nano; 2010 Aug; 4(8):4565-70. PubMed ID: 20669980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure, stability, edge states, and aromaticity of graphene ribbons.
    Wassmann T; Seitsonen AP; Saitta AM; Lazzeri M; Mauri F
    Phys Rev Lett; 2008 Aug; 101(9):096402. PubMed ID: 18851629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model.
    Sherman A
    J Phys Condens Matter; 2018 May; 30(19):195601. PubMed ID: 29583129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Invasions Slow Down or Collapse in the Presence of Reactive Boundaries.
    Minors K; Dawes JHP
    Bull Math Biol; 2017 Oct; 79(10):2197-2214. PubMed ID: 28766158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.