These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 31039804)
1. Evidence from genome wide association studies implicates reduced control of Epstein-Barr virus infection in multiple sclerosis susceptibility. Afrasiabi A; Parnell GP; Fewings N; Schibeci SD; Basuki MA; Chandramohan R; Zhou Y; Taylor B; Brown DA; Swaminathan S; McKay FC; Stewart GJ; Booth DR Genome Med; 2019 Apr; 11(1):26. PubMed ID: 31039804 [TBL] [Abstract][Full Text] [Related]
2. The interaction of Epstein-Barr virus encoded transcription factor EBNA2 with multiple sclerosis risk loci is dependent on the risk genotype. Keane JT; Afrasiabi A; Schibeci SD; Swaminathan S; Parnell GP; Booth DR EBioMedicine; 2021 Sep; 71():103572. PubMed ID: 34488019 [TBL] [Abstract][Full Text] [Related]
3. Gender and the Sex Hormone Estradiol Affect Multiple Sclerosis Risk Gene Expression in Epstein-Barr Virus-Infected B Cells. Keane JT; Afrasiabi A; Schibeci SD; Fewings N; Parnell GP; Swaminathan S; Booth DR Front Immunol; 2021; 12():732694. PubMed ID: 34566997 [TBL] [Abstract][Full Text] [Related]
4. The interaction of Multiple Sclerosis risk loci with Epstein-Barr virus phenotypes implicates the virus in pathogenesis. Afrasiabi A; Parnell GP; Swaminathan S; Stewart GJ; Booth DR Sci Rep; 2020 Jan; 10(1):193. PubMed ID: 31932685 [TBL] [Abstract][Full Text] [Related]
5. c-Myc Represses Transcription of Epstein-Barr Virus Latent Membrane Protein 1 Early after Primary B Cell Infection. Price AM; Messinger JE; Luftig MA J Virol; 2018 Jan; 92(2):. PubMed ID: 29118124 [TBL] [Abstract][Full Text] [Related]
6. Transcribed B lymphocyte genes and multiple sclerosis risk genes are underrepresented in Epstein-Barr Virus hypomethylated regions. Ong LTC; Parnell GP; Afrasiabi A; Stewart GJ; Swaminathan S; Booth DR Genes Immun; 2020 Feb; 21(2):91-99. PubMed ID: 31619767 [TBL] [Abstract][Full Text] [Related]
7. The Interaction of Human and Afrasiabi A; Fewings NL; Schibeci SD; Keane JT; Booth DR; Parnell GP; Swaminathan S Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805769 [TBL] [Abstract][Full Text] [Related]
8. Determining the role of the Epstein-Barr virus Cp EBNA2-dependent enhancer during the establishment of latency by using mutant and wild-type viruses recovered from cottontop marmoset lymphoblastoid cell lines. Yoo L; Speck SH J Virol; 2000 Dec; 74(23):11115-20. PubMed ID: 11070007 [TBL] [Abstract][Full Text] [Related]
9. Host genetic variants and gene expression patterns associated with Epstein-Barr virus copy number in lymphoblastoid cell lines. Houldcroft CJ; Petrova V; Liu JZ; Frampton D; Anderson CA; Gall A; Kellam P PLoS One; 2014; 9(10):e108384. PubMed ID: 25290448 [TBL] [Abstract][Full Text] [Related]
10. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases. Niller HH; Wolf H; Minarovits J Autoimmunity; 2008 May; 41(4):298-328. PubMed ID: 18432410 [TBL] [Abstract][Full Text] [Related]
11. Epstein-Barr virus (EBV) infection in infectious mononucleosis: virus latency, replication and phenotype of EBV-infected cells. Niedobitek G; Agathanggelou A; Herbst H; Whitehead L; Wright DH; Young LS J Pathol; 1997 Jun; 182(2):151-9. PubMed ID: 9274524 [TBL] [Abstract][Full Text] [Related]
12. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing Systemic Lupus Erythematosus. Afrasiabi A; Keane JT; Ong LTC; Alinejad-Rokny H; Fewings NL; Booth DR; Parnell GP; Swaminathan S J Autoimmun; 2022 Feb; 127():102781. PubMed ID: 34952359 [TBL] [Abstract][Full Text] [Related]
13. Identification of MEF2B, EBF1, and IL6R as Direct Gene Targets of Epstein-Barr Virus (EBV) Nuclear Antigen 1 Critical for EBV-Infected B-Lymphocyte Survival. Tempera I; De Leo A; Kossenkov AV; Cesaroni M; Song H; Dawany N; Showe L; Lu F; Wikramasinghe P; Lieberman PM J Virol; 2016 Jan; 90(1):345-55. PubMed ID: 26468528 [TBL] [Abstract][Full Text] [Related]
14. Identification of Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis: activation of EBNA2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV. Schlee M; Krug T; Gires O; Zeidler R; Hammerschmidt W; Mailhammer R; Laux G; Sauer G; Lovric J; Bornkamm GW J Virol; 2004 Apr; 78(8):3941-52. PubMed ID: 15047810 [TBL] [Abstract][Full Text] [Related]
15. Interleukin-21 regulates expression of key Epstein-Barr virus oncoproteins, EBNA2 and LMP1, in infected human B cells. Konforte D; Simard N; Paige CJ Virology; 2008 Apr; 374(1):100-13. PubMed ID: 18222514 [TBL] [Abstract][Full Text] [Related]
16. Maintenance of Epstein-Barr Virus Latent Status by a Novel Mechanism, Latent Membrane Protein 1-Induced Interleukin-32, via the Protein Kinase Cδ Pathway. Lai KY; Chou YC; Lin JH; Liu Y; Lin KM; Doong SL; Chen MR; Yeh TH; Lin SJ; Tsai CH J Virol; 2015 Jun; 89(11):5968-80. PubMed ID: 25810549 [TBL] [Abstract][Full Text] [Related]
17. Association of Epstein-Barr virus latently expressed genes with multiple sclerosis. Varvatsi D; Richter J; Tryfonos C; Pantzaris M; Christodoulou C Mult Scler Relat Disord; 2021 Jul; 52():103008. PubMed ID: 34010765 [TBL] [Abstract][Full Text] [Related]
18. Epstein-barr virus-induced changes in B-lymphocyte gene expression. Carter KL; Cahir-McFarland E; Kieff E J Virol; 2002 Oct; 76(20):10427-36. PubMed ID: 12239319 [TBL] [Abstract][Full Text] [Related]