These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31040886)

  • 1. Coins in microfluidics: From mere scale objects to font of inspiration for microchannel circuits.
    Pitingolo G; Taly V; Nastruzzi C
    Biomicrofluidics; 2019 Mar; 13(2):024106. PubMed ID: 31040886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.
    Temiz Y; Delamarche E
    Methods Mol Biol; 2017; 1547():25-36. PubMed ID: 28044284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and validation of low cost microfluidic chips using a shrinking approach.
    Focaroli S; Mazzitelli S; Falconi M; Luca G; Nastruzzi C
    Lab Chip; 2014 Oct; 14(20):4007-16. PubMed ID: 25144915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New family of fluorinated polymer chips for droplet and organic solvent microfluidics.
    Begolo S; Colas G; Viovy JL; Malaquin L
    Lab Chip; 2011 Feb; 11(3):508-12. PubMed ID: 21113543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. User-Friendly Microfabrication Method for Complex Topological Structure and Three-Dimensional Microchannel with the Application Prospect in Polymerase Chain Reaction (PCR).
    Wang K; He L; Manz A; Wu W
    Anal Chem; 2021 Jan; 93(3):1523-1528. PubMed ID: 33326206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of thermoplastics chips through lamination based techniques.
    Miserere S; Mottet G; Taniga V; Descroix S; Viovy JL; Malaquin L
    Lab Chip; 2012 Apr; 12(10):1849-56. PubMed ID: 22487893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid prototyping of microfluidic chips enabling controlled biotechnology applications in microspace.
    Garmasukis R; Hackl C; Charvat A; Mayr SG; Abel B
    Curr Opin Biotechnol; 2023 Jun; 81():102948. PubMed ID: 37163825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Microchannel Replicability of Injection Molded Electrophoresis Microfluidic Chips.
    Jiang B; Zhu L; Min L; Li X; Zhai Z; Drummer D
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30960592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.
    Hu C; Lin S; Li W; Sun H; Chen Y; Chan CW; Leung CH; Ma DL; Wu H; Ren K
    Lab Chip; 2016 Oct; 16(20):3909-3918. PubMed ID: 27722382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication.
    Jiménez-Díaz E; Cano-Jorge M; Zamarrón-Hernández D; Cabriales L; Páez-Larios F; Cruz-Ramírez A; Vázquez-Victorio G; Fiordelisio T; Hautefeuille M
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Cost-Effective Microfluidic Chip Based on Hybrid Fabrication and Its Comprehensive Characterization.
    Kojic SP; Stojanovic GM; Radonic V
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Fabrication of Microfluidic Chips for 3D Hydrodynamic Focusing and Wet Spinning of Polymeric Fibers.
    Gursoy A; Iranshahi K; Wei K; Tello A; Armagan E; Boesel LF; Sorin F; Rossi RM; Defraeye T; Toncelli C
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32164361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple and low-cost production of hybrid 3D-printed microfluidic devices.
    Duong LH; Chen PC
    Biomicrofluidics; 2019 Mar; 13(2):024108. PubMed ID: 31065307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and inexpensive microfluidic electrode integration with conductive ink.
    McIntyre D; Lashkaripour A; Densmore D
    Lab Chip; 2020 Oct; 20(20):3690-3695. PubMed ID: 32895672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Microfluidic Chips Based on an EHD-Assisted Direct Printing Method.
    Chi X; Zhang X; Li Z; Yuan Z; Zhu L; Zhang F; Yang J
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel, low cost, and accessible method for rapid fabrication of the modifiable microfluidic devices.
    Annabestani M; Esmaeili-Dokht P; Fardmanesh M
    Sci Rep; 2020 Oct; 10(1):16513. PubMed ID: 33020544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.
    Gicquel Y; Schubert R; Kapis S; Bourenkov G; Schneider T; Perbandt M; Betzel C; Chapman HN; Heymann M
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.