These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 31041532)
1. Impact of warming climate, sowing date, and cultivar shift on rice phenology across China during 1981-2010. Bai H; Xiao D; Zhang H; Tao F; Hu Y Int J Biometeorol; 2019 Aug; 63(8):1077-1089. PubMed ID: 31041532 [TBL] [Abstract][Full Text] [Related]
2. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift. Tao F; Zhang S; Zhang Z; Rötter RP Glob Chang Biol; 2014 Dec; 20(12):3686-99. PubMed ID: 25044728 [TBL] [Abstract][Full Text] [Related]
3. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite. Tao F; Zhang Z; Shi W; Liu Y; Xiao D; Zhang S; Zhu Z; Wang M; Liu F Glob Chang Biol; 2013 Oct; 19(10):3200-9. PubMed ID: 23661287 [TBL] [Abstract][Full Text] [Related]
4. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Liu Z; Hubbard KG; Lin X; Yang X Glob Chang Biol; 2013 Nov; 19(11):3481-92. PubMed ID: 23857749 [TBL] [Abstract][Full Text] [Related]
5. Impacts of climate change and crop management practices on soybean phenology changes in China. He L; Jin N; Yu Q Sci Total Environ; 2020 Mar; 707():135638. PubMed ID: 31780168 [TBL] [Abstract][Full Text] [Related]
6. Effects of climate change and crop management on changes in rice phenology in China from 1981 to 2010. Chen J; Liu Y; Zhou W; Zhang J; Pan T J Sci Food Agric; 2021 Dec; 101(15):6311-6319. PubMed ID: 33969880 [TBL] [Abstract][Full Text] [Related]
7. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. Li K; Yang X; Tian H; Pan S; Liu Z; Lu S Int J Biometeorol; 2016 Jan; 60(1):21-32. PubMed ID: 25962358 [TBL] [Abstract][Full Text] [Related]
8. Climate Change Impact on Yield and Water Use of Rice-Wheat Rotation System in the Huang-Huai-Hai Plain, China. Zhao Y; Xiao D; Bai H; Liu L; Tang J; Qi Y; Shen Y Biology (Basel); 2022 Aug; 11(9):. PubMed ID: 36138744 [TBL] [Abstract][Full Text] [Related]
9. Climate warming worsens thermal resource utilization for practical rice cultivation in China. Zhang L; Huo Z; Yang B; Guo A; Xiao J; Li S; Tan F; Gyilbag A Int J Biometeorol; 2024 Apr; 68(4):613-624. PubMed ID: 38147117 [TBL] [Abstract][Full Text] [Related]
10. Trends in maize (Zea mays L.) phenology and sensitivity to climate factors in China from 1981 to 2010. Liu Y; Qin Y; Wang H; Lv S; Ge Q Int J Biometeorol; 2020 Mar; 64(3):461-470. PubMed ID: 31776672 [TBL] [Abstract][Full Text] [Related]
11. Projective analysis of staple food crop productivity in adaptation to future climate change in China. Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124 [TBL] [Abstract][Full Text] [Related]
13. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Zhang T; Huang Y; Yang X Glob Chang Biol; 2013 Feb; 19(2):563-70. PubMed ID: 23504793 [TBL] [Abstract][Full Text] [Related]
14. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012. Wang Z; Chen J; Xing F; Han Y; Chen F; Zhang L; Li Y; Li C Sci Rep; 2017 Jul; 7(1):6628. PubMed ID: 28747769 [TBL] [Abstract][Full Text] [Related]
15. Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan. Anser MK; Hina T; Hameed S; Nasir MH; Ahmad I; Naseer MAUR Int J Environ Res Public Health; 2020 Apr; 17(7):. PubMed ID: 32272663 [TBL] [Abstract][Full Text] [Related]
16. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894 [TBL] [Abstract][Full Text] [Related]
17. Optimizing genotype-environment-management interactions for maize farmers to adapt to climate change in different agro-ecological zones across China. Zhang L; Zhang Z; Luo Y; Cao J; Li Z Sci Total Environ; 2020 Aug; 728():138614. PubMed ID: 32344223 [TBL] [Abstract][Full Text] [Related]
18. Effects of climatic and cultivar changes on winter wheat phenology in central Lithuania. A K; I V; R J; G S Int J Biometeorol; 2022 Oct; 66(10):2009-2020. PubMed ID: 35962858 [TBL] [Abstract][Full Text] [Related]
19. Simulation of the impacts of climate change on phenology, growth, and yield of various rice genotypes in humid sub-tropical environments using AquaCrop-Rice. Raoufi RS; Soufizadeh S Int J Biometeorol; 2020 Oct; 64(10):1657-1673. PubMed ID: 32683529 [TBL] [Abstract][Full Text] [Related]
20. The negative impact of increasing temperatures on rice yields in southern China. Song Y; Wang C; Linderholm HW; Fu Y; Cai W; Xu J; Zhuang L; Wu M; Shi Y; Wang G; Chen D Sci Total Environ; 2022 May; 820():153262. PubMed ID: 35065105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]