BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 31041538)

  • 21. Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting.
    Dubbin K; Hori Y; Lewis KK; Heilshorn SC
    Adv Healthc Mater; 2016 Oct; 5(19):2488-2492. PubMed ID: 27581767
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Bioprinting of Self-Standing Silk-Based Bioink.
    Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL
    Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW
    Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues.
    Freeman FE; Kelly DJ
    Sci Rep; 2017 Dec; 7(1):17042. PubMed ID: 29213126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation.
    Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S
    Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting.
    Müller M; Becher J; Schnabelrauch M; Zenobi-Wong M
    Biofabrication; 2015 Aug; 7(3):035006. PubMed ID: 26260872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering.
    Singh YP; Bandyopadhyay A; Mandal BB
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D bioprinting and microscale organization of vascularized tissue constructs using collagen-based bioink.
    Muthusamy S; Kannan S; Lee M; Sanjairaj V; Lu WF; Fuh JYH; Sriram G; Cao T
    Biotechnol Bioeng; 2021 Aug; 118(8):3150-3163. PubMed ID: 34037982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D bioprinted hydrogel model incorporating β-tricalcium phosphate for calcified cartilage tissue engineering.
    Kosik-Kozioł A; Costantini M; Mróz A; Idaszek J; Heljak M; Jaroszewicz J; Kijeńska E; Szöke K; Frerker N; Barbetta A; Brinchmann JE; Święszkowski W
    Biofabrication; 2019 May; 11(3):035016. PubMed ID: 30943457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioink properties before, during and after 3D bioprinting.
    Hölzl K; Lin S; Tytgat L; Van Vlierberghe S; Gu L; Ovsianikov A
    Biofabrication; 2016 Sep; 8(3):032002. PubMed ID: 27658612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue.
    Galarraga JH; Kwon MY; Burdick JA
    Sci Rep; 2019 Dec; 9(1):19987. PubMed ID: 31882612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques.
    Askari M; Afzali Naniz M; Kouhi M; Saberi A; Zolfagharian A; Bodaghi M
    Biomater Sci; 2021 Feb; 9(3):535-573. PubMed ID: 33185203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications.
    Shin JY; Yeo YH; Jeong JE; Park SA; Park WH
    Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell sheet based bioink for 3D bioprinting applications.
    Bakirci E; Toprakhisar B; Zeybek MC; Ince GO; Koc B
    Biofabrication; 2017 Jun; 9(2):024105. PubMed ID: 28569243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering.
    Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J
    Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink.
    Ahlfeld T; Doberenz F; Kilian D; Vater C; Korn P; Lauer G; Lode A; Gelinsky M
    Biofabrication; 2018 Jul; 10(4):045002. PubMed ID: 30004388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.