These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 31041708)
1. Fresh underground light non-aqueous liquid (LNAPL) pollution source zone monitoring in an outdoor experiment using cross-hole electrical resistivity tomography. Shao S; Guo X; Gao C Environ Sci Pollut Res Int; 2019 Jun; 26(18):18316-18328. PubMed ID: 31041708 [TBL] [Abstract][Full Text] [Related]
2. LNAPL migration processes based on time-lapse electrical resistivity tomography. Li ZP; Liu Y; Zhao GZ; Liu SK; Liu WH J Contam Hydrol; 2023 Nov; 259():104260. PubMed ID: 37922725 [TBL] [Abstract][Full Text] [Related]
3. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer. Cohen GJV; Jousse F; Luze N; Höhener P; Atteia O J Contam Hydrol; 2016 Sep; 192():20-34. PubMed ID: 27341018 [TBL] [Abstract][Full Text] [Related]
4. Study on diesel vertical migration characteristics and mechanism in water-bearing sand stratum using an automated resistivity monitoring system. Pan Y; Jia Y; Wang Y; Xia X; Guo L Environ Sci Pollut Res Int; 2018 Feb; 25(4):3802-3812. PubMed ID: 29177997 [TBL] [Abstract][Full Text] [Related]
5. Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: practical implications for hydrological studies. Cassidy NJ J Contam Hydrol; 2007 Oct; 94(1-2):49-75. PubMed ID: 17601633 [TBL] [Abstract][Full Text] [Related]
6. Post-remediation evaluation of a LNAPL site using electrical resistivity imaging. Halihan T; Paxton S; Graham I; Fenstemaker T; Riley M J Environ Monit; 2005 Apr; 7(4):283-7. PubMed ID: 15798793 [TBL] [Abstract][Full Text] [Related]
7. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation. Power C; Gerhard JI; Karaoulis M; Tsourlos P; Giannopoulos A J Contam Hydrol; 2014 Jul; 162-163():27-46. PubMed ID: 24854903 [TBL] [Abstract][Full Text] [Related]
8. [Numerical simulation and application of electrical resistivity survey in heavy metal contaminated sites]. Wang YL; Nai CX; Wang YW; Dong L Huan Jing Ke Xue; 2013 May; 34(5):1908-14. PubMed ID: 23914547 [TBL] [Abstract][Full Text] [Related]
9. Sustainable risk-based analysis towards remediation of an aquifer impacted by crude oil spills. Al-Busaidi Z; Baawain M; Sana A; Ebrahimi A; Omidvarborna H J Environ Manage; 2019 Oct; 247():333-341. PubMed ID: 31252232 [TBL] [Abstract][Full Text] [Related]
10. An experimental multi-method approach to better characterize the LNAPL fate in soil under fluctuating groundwater levels. Cavelan A; Faure P; Lorgeoux C; Colombano S; Deparis J; Davarzani D; Enjelvin N; Oltean C; Tinet AJ; Domptail F; Golfier F J Contam Hydrol; 2024 Mar; 262():104319. PubMed ID: 38359773 [TBL] [Abstract][Full Text] [Related]
11. Retention effect and mode of capillary zone on the migration process of LNAPL pollutants based on experimental exploration. Zuo R; Wu Z; Li J; Zheng S; Liu J; Han K; Liu Y; Wang J Ecotoxicol Environ Saf; 2023 Mar; 253():114669. PubMed ID: 36841079 [TBL] [Abstract][Full Text] [Related]
12. An analytical model for predicting LNAPL distribution and recovery from multi-layered soils. Jeong J; Charbeneau RJ J Contam Hydrol; 2014 Jan; 156():52-61. PubMed ID: 24262305 [TBL] [Abstract][Full Text] [Related]
13. Experimental and theoretical investigation of LNAPL movement in stratified media during soil remediation. Lashanizadegan A; Ayatollahi Sh; Kazemi H Environ Technol; 2007 Jul; 28(7):743-50. PubMed ID: 17674647 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of factors causing lateral migration of light non-aqueous phase liquids (LNAPLs) in onshore oil spill accidents. Waqar A Environ Sci Pollut Res Int; 2024 Feb; 31(7):10853-10873. PubMed ID: 38214856 [TBL] [Abstract][Full Text] [Related]
15. Impact of heterogeneous properties of soil and LNAPL on surfactant-enhanced capillary desaturation. Robert T; Martel R; Lefebvre R; Lauzon JM; Morin A J Contam Hydrol; 2017 Sep; 204():57-65. PubMed ID: 28826903 [TBL] [Abstract][Full Text] [Related]
16. Persistence of LNAPL sources: relationship between risk reduction and LNAPL recovery. Huntley D; Beckett GD J Contam Hydrol; 2002 Nov; 59(1-2):3-26. PubMed ID: 12683637 [TBL] [Abstract][Full Text] [Related]
17. Towards characterizing LNAPL remediation endpoints. Sookhak Lari K; Rayner JL; Davis GB J Environ Manage; 2018 Oct; 224():97-105. PubMed ID: 30031923 [TBL] [Abstract][Full Text] [Related]
18. [Experiment results of conduction, spectral induced polarization and dielectric characteristics for chrome-contaminated soil]. Nai CX; Liu YQ; Liu HR; Dong L Huan Jing Ke Xue; 2011 Mar; 32(3):758-65. PubMed ID: 21634175 [TBL] [Abstract][Full Text] [Related]
19. Experimental study on the transport characteristics of buried pipeline leakage and the performance of groundwater remediation system. Jiang W; Yang J; Zhu J; Liu Y; Chen Y; Sun Q; Wang Y; Zhang H Environ Sci Pollut Res Int; 2018 Dec; 25(36):36570-36580. PubMed ID: 30374722 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey. Ahmed AM; Sulaiman WN Environ Manage; 2001 Nov; 28(5):655-63. PubMed ID: 11568845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]