These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31041901)

  • 1. Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. II. The Fourier transform method.
    Nguyen D; Volkov A
    Acta Crystallogr A Found Adv; 2019 May; 75(Pt 3):448-464. PubMed ID: 31041901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. III. Application to crystal structures via the Ewald and direct summation methods.
    Nguyen D; Macchi P; Volkov A
    Acta Crystallogr A Found Adv; 2020 Nov; 76(Pt 6):630-651. PubMed ID: 33125348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. I. The Löwdin α-function method.
    Nguyen D; Kisiel Z; Volkov A
    Acta Crystallogr A Found Adv; 2018 Sep; 74(Pt 5):524-536. PubMed ID: 30182939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model. II. Evaluation of the properties in an infinite crystal.
    Weatherly J; Macchi P; Volkov A
    Acta Crystallogr A Found Adv; 2021 Sep; 77(Pt 5):399-419. PubMed ID: 34473095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning.
    Volkov A; Coppens P
    J Comput Chem; 2004 May; 25(7):921-34. PubMed ID: 15027105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rush to explore protein-ligand electrostatic interaction energy with Charger.
    Vuković V; Leduc T; Jelić-Matošević Z; Didierjean C; Favier F; Guillot B; Jelsch C
    Acta Crystallogr D Struct Biol; 2021 Oct; 77(Pt 10):1292-1304. PubMed ID: 34605432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of point multipole moments and charge penetration for intermolecular electrostatic interaction energies from the University at Buffalo pseudoatom databank model of electron density.
    Bojarowski SA; Kumar P; Dominiak PM
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2017 Aug; 73(Pt 4):598-609. PubMed ID: 28762970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalization of the Gaussian electrostatic model: extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods.
    Cisneros GA; Piquemal JP; Darden TA
    J Chem Phys; 2006 Nov; 125(18):184101. PubMed ID: 17115732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of the Intermolecular Electrostatic Interaction Energy on the Level of Theory and the Basis Set.
    Volkov A; King HF; Coppens P
    J Chem Theory Comput; 2006 Jan; 2(1):81-9. PubMed ID: 26626382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unified approach to multipolar polarisation and charge transfer for ions: microhydrated Na+.
    Mills MJ; Hawe GI; Handley CM; Popelier PL
    Phys Chem Chem Phys; 2013 Nov; 15(41):18249-61. PubMed ID: 24064799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Study of Transferable Aspherical Pseudoatom Databank and Classical Force Fields for Predicting Electrostatic Interactions in Molecular Dimers.
    Kumar P; Bojarowski SA; Jarzembska KN; Domagała S; Vanommeslaeghe K; Mackerell AD; Dominiak PM
    J Chem Theory Comput; 2014 Apr; 10(4):1652-1664. PubMed ID: 24803869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in the understanding of drug-receptor interactions, part 2: experimental and theoretical electrostatic moments and interaction energies of an angiotensin II receptor antagonist (C30H30N6(O)3S).
    Soave R; Barzaghi M; Destro R
    Chemistry; 2007; 13(24):6942-56. PubMed ID: 17539033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interplay between experiment and theory in charge-density analysis.
    Coppens P; Volkov A
    Acta Crystallogr A; 2004 Sep; 60(Pt 5):357-64. PubMed ID: 15477672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the calculation of the electrostatic potential, electric field and electric field gradient from the aspherical pseudoatom model.
    Volkov A; King HF; Coppens P; Farrugia LJ
    Acta Crystallogr A; 2006 Sep; 62(Pt 5):400-8. PubMed ID: 16926487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General Model for Treating Short-Range Electrostatic Penetration in a Molecular Mechanics Force Field.
    Wang Q; Rackers JA; He C; Qi R; Narth C; Lagardere L; Gresh N; Ponder JW; Piquemal JP; Ren P
    J Chem Theory Comput; 2015 Jun; 11(6):2609-2618. PubMed ID: 26413036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules.
    Bereau T; Andrienko D; von Lilienfeld OA
    J Chem Theory Comput; 2015 Jul; 11(7):3225-33. PubMed ID: 26575759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Verification of structural and electrostatic properties obtained by the use of different pseudoatom databases.
    Bąk JM; Domagała S; Hübschle C; Jelsch C; Dittrich B; Dominiak PM
    Acta Crystallogr A; 2011 Mar; 67(Pt 2):141-53. PubMed ID: 21325717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Integral-Direct Linear-Scaling Second-Order Møller-Plesset Approach.
    Nagy PR; Samu G; Kállay M
    J Chem Theory Comput; 2016 Oct; 12(10):4897-4914. PubMed ID: 27618512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.