These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31042027)

  • 1. Methane Bubble Ascent within Fine-Grained Cohesive Aquatic Sediments: Dynamics and Controlling Factors.
    Sirhan ST; Katsman R; Lazar M
    Environ Sci Technol; 2019 Jun; 53(11):6320-6329. PubMed ID: 31042027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel sediment gas sampler and a subsurface gas collector used for measurement of the ebullition of methane and carbon dioxide from a eutrophied lake.
    Huttunen JT; Lappalainen KM; Saarijärvi E; Väsänen T; Martikainen PJ
    Sci Total Environ; 2001 Feb; 266(1-3):153-8. PubMed ID: 11258812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane Bubble Growth and Migration in Aquatic Sediments Observed by X-ray μCT.
    Liu L; De Kock T; Wilkinson J; Cnudde V; Xiao S; Buchmann C; Uteau D; Peth S; Lorke A
    Environ Sci Technol; 2018 Feb; 52(4):2007-2015. PubMed ID: 29377677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane gas dynamics in sediments of Lake Kinneret, Israel, and their controls: Insights from a multiannual acoustic investigation and correlation analysis.
    Katsman R; Uzhansky E; Lunkov A; Katsnelson B
    Sci Total Environ; 2024 Mar; 918():170480. PubMed ID: 38296083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrate Growth on Methane Gas Bubbles in the Presence of Salt.
    Yu LCY; Charlton TB; Aman ZM; Wu DT; Koh CA
    Langmuir; 2020 Jan; 36(1):84-95. PubMed ID: 31820993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size does matter: importance of large bubbles and small-scale hot spots for methane transport.
    DelSontro T; McGinnis DF; Wehrli B; Ostrovsky I
    Environ Sci Technol; 2015 Feb; 49(3):1268-76. PubMed ID: 25551318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Method for the Quantification of Methane Concentrations in Unconsolidated Lake Sediments.
    Tyroller L; Tomonaga Y; Brennwald MS; Ndayisaba C; Naeher S; Schubert C; North RP; Kipfer R
    Environ Sci Technol; 2016 Jul; 50(13):7047-55. PubMed ID: 27244276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial methane pattern in a deep freshwater lake: Relation to water depth and topography.
    Li L; Fuchs A; Ortega SH; Xue B; Casper P
    Sci Total Environ; 2021 Apr; 764():142829. PubMed ID: 33143919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shallow Gas Migration along Hydrocarbon Wells-An Unconsidered, Anthropogenic Source of Biogenic Methane in the North Sea.
    Vielstädte L; Haeckel M; Karstens J; Linke P; Schmidt M; Steinle L; Wallmann K
    Environ Sci Technol; 2017 Sep; 51(17):10262-10268. PubMed ID: 28763203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ancient dissolved methane in inland waters revealed by a new collection method at low field concentrations for radiocarbon (
    Dean JF; Billett MF; Murray C; Garnett MH
    Water Res; 2017 May; 115():236-244. PubMed ID: 28284090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of methane in aquatic systems dominated by free-floating plants.
    Kosten S; Piñeiro M; de Goede E; de Klein J; Lamers LPM; Ettwig K
    Water Res; 2016 Nov; 104():200-207. PubMed ID: 27525583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane Bubble Size Distributions, Flux, and Dissolution in a Freshwater Lake.
    Delwiche KB; Hemond HF
    Environ Sci Technol; 2017 Dec; 51(23):13733-13739. PubMed ID: 29116771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon dioxide induced bubble formation in a CH4-CO2-H2O ternary system: a molecular dynamics simulation study.
    Sujith KS; Ramachandran CN
    Phys Chem Chem Phys; 2016 Feb; 18(5):3746-54. PubMed ID: 26762545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.
    Sujith KS; Ramachandran CN
    J Phys Chem B; 2017 Jan; 121(1):153-163. PubMed ID: 27935719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubbles dominated the significant spatiotemporal variability and accumulation of methane concentrations in an ice-covered reservoir.
    Jin Y; Chen X; Guan H; Zhao H; Yu R; Li Z; Xu S
    Sci Total Environ; 2024 Mar; 918():170362. PubMed ID: 38280595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A laboratory study of sediment and contaminant release during gas ebullition.
    Yuan Q; Valsaraj KT; Reible DD; Willson CS
    J Air Waste Manag Assoc; 2007 Sep; 57(9):1103-11. PubMed ID: 17912929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of weir impoundments on methane dynamics in a river.
    Bednařík A; Blaser M; Matoušů A; Hekera P; Rulík M
    Sci Total Environ; 2017 Apr; 584-585():164-174. PubMed ID: 28147296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments.
    Delsontro T; McGinnis DF; Sobek S; Ostrovsky I; Wehrli B
    Environ Sci Technol; 2010 Apr; 44(7):2419-25. PubMed ID: 20218543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic propagation in gassy intertidal marine sediments: An experimental study.
    Leighton TG; Dogan H; Fox P; Mantouka A; Best AI; Robb GBR; White PR
    J Acoust Soc Am; 2021 Oct; 150(4):2705. PubMed ID: 34717471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ Raman study on kinetics behaviors of hydrated bubble in thickening.
    Zeng XY; Wu G; Zhang S; Sun L; Sun C; Chen G; Zhong J; Li P; Yang Z; Feng JC
    Sci Total Environ; 2022 Mar; 814():152476. PubMed ID: 34952051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.