These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 31042117)
1. Zhang J; Zhao Y; Liu R; Zhou C Plant Signal Behav; 2019; 14(7):1612683. PubMed ID: 31042117 [TBL] [Abstract][Full Text] [Related]
2. Zhao Y; Liu R; Xu Y; Wang M; Zhang J; Bai M; Han C; Xiang F; Wang ZY; Mysore KS; Wen J; Zhou C Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5176-5181. PubMed ID: 30782811 [TBL] [Abstract][Full Text] [Related]
3. Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development. Zhou C; Han L; Hou C; Metelli A; Qi L; Tadege M; Mysore KS; Wang ZY Plant Cell; 2011 Jun; 23(6):2106-24. PubMed ID: 21693694 [TBL] [Abstract][Full Text] [Related]
4. Auxin efflux transporter MtPIN10 regulates compound leaf and flower development in Medicago truncatula. Peng J; Chen R Plant Signal Behav; 2011 Oct; 6(10):1537-44. PubMed ID: 21900740 [TBL] [Abstract][Full Text] [Related]
5. LOOSE FLOWER, a WUSCHEL-like Homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula. Niu L; Lin H; Zhang F; Watira TW; Li G; Tang Y; Wen J; Ratet P; Mysore KS; Tadege M Plant J; 2015 Feb; 81(3):480-92. PubMed ID: 25492397 [TBL] [Abstract][Full Text] [Related]
6. Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Wang H; Chen J; Wen J; Tadege M; Li G; Liu Y; Mysore KS; Ratet P; Chen R Plant Physiol; 2008 Apr; 146(4):1759-72. PubMed ID: 18287485 [TBL] [Abstract][Full Text] [Related]
7. Regulation of compound leaf development in Medicago truncatula by fused compound leaf1, a class M KNOX gene. Peng J; Yu J; Wang H; Guo Y; Li G; Bai G; Chen R Plant Cell; 2011 Nov; 23(11):3929-43. PubMed ID: 22080596 [TBL] [Abstract][Full Text] [Related]
9. The trans-acting short interfering RNA3 pathway and no apical meristem antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of an argonaute7/lobed leaflet1 mutant in Medicago truncatula. Zhou C; Han L; Fu C; Wen J; Cheng X; Nakashima J; Ma J; Tang Y; Tan Y; Tadege M; Mysore KS; Xia G; Wang ZY Plant Cell; 2013 Dec; 25(12):4845-62. PubMed ID: 24368797 [TBL] [Abstract][Full Text] [Related]
10. NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula. Cheng X; Peng J; Ma J; Tang Y; Chen R; Mysore KS; Wen J New Phytol; 2012 Jul; 195(1):71-84. PubMed ID: 22530598 [TBL] [Abstract][Full Text] [Related]
11. Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume Medicago truncatula. Chen J; Yu J; Ge L; Wang H; Berbel A; Liu Y; Chen Y; Li G; Tadege M; Wen J; Cosson V; Mysore KS; Ratet P; Madueño F; Bai G; Chen R Proc Natl Acad Sci U S A; 2010 Jun; 107(23):10754-9. PubMed ID: 20498057 [TBL] [Abstract][Full Text] [Related]
12. Functional Genomics and Genetic Control of Compound Leaf Development in Medicago truncatula: An Overview. Chen R Methods Mol Biol; 2018; 1822():197-203. PubMed ID: 30043306 [TBL] [Abstract][Full Text] [Related]
13. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. Yang T; Li Y; Liu Y; He L; Liu A; Wen J; Mysore KS; Tadege M; Chen J Plant Mol Biol; 2021 Jan; 105(1-2):193-204. PubMed ID: 33037987 [TBL] [Abstract][Full Text] [Related]
14. Dissection of genetic regulation of compound inflorescence development in Cheng X; Li G; Tang Y; Wen J Development; 2018 Feb; 145(3):. PubMed ID: 29361570 [TBL] [Abstract][Full Text] [Related]
15. MtSUPERMAN plays a key role in compound inflorescence and flower development in Medicago truncatula. Rodas AL; Roque E; Hamza R; Gómez-Mena C; Minguet EG; Wen J; Mysore KS; Beltrán JP; Cañas LA Plant J; 2021 Feb; 105(3):816-830. PubMed ID: 33176041 [TBL] [Abstract][Full Text] [Related]
16. AGAMOUS AND TERMINAL FLOWER controls floral organ identity and inflorescence development in Medicago truncatula. Zhu B; Li H; Hou Y; Zhang P; Xia X; Wang N; Wang H; Mysore KS; Wen J; Pei Y; Niu L; Lin H J Integr Plant Biol; 2019 Aug; 61(8):917-923. PubMed ID: 30839160 [TBL] [Abstract][Full Text] [Related]
17. Regulation of compound leaf development by PHANTASTICA in Medicago truncatula. Ge L; Peng J; Berbel A; Madueño F; Chen R Plant Physiol; 2014 Jan; 164(1):216-28. PubMed ID: 24218492 [TBL] [Abstract][Full Text] [Related]
18. A molecular framework underlying the compound leaf pattern of Medicago truncatula. He L; Liu Y; He H; Liu Y; Qi J; Zhang X; Li Y; Mao Y; Zhou S; Zheng X; Bai Q; Zhao B; Wang D; Wen J; Mysore KS; Tadege M; Xia Y; Chen J Nat Plants; 2020 May; 6(5):511-521. PubMed ID: 32393879 [TBL] [Abstract][Full Text] [Related]
19. Roles of very long-chain fatty acids in compound leaf patterning in Medicago truncatula. Wang H; Lu Z; Xu Y; Zhang J; Han L; Chai M; Wang ZY; Yang X; Lu S; Tong J; Xiao L; Wen J; Mysore KS; Zhou C Plant Physiol; 2023 Mar; 191(3):1751-1770. PubMed ID: 36617225 [TBL] [Abstract][Full Text] [Related]
20. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. Tadege M; Lin H; Bedair M; Berbel A; Wen J; Rojas CM; Niu L; Tang Y; Sumner L; Ratet P; McHale NA; Madueño F; Mysore KS Plant Cell; 2011 Jun; 23(6):2125-42. PubMed ID: 21719692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]