These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 31042224)

  • 1. Subhertz interferometry at the quantum noise limit.
    Yang P; Xie B; Feng S
    Opt Lett; 2019 May; 44(9):2366-2369. PubMed ID: 31042224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Squeezing-enhanced heterodyne detection of 10  Hz atto-Watt optical signals.
    Xie B; Feng S
    Opt Lett; 2018 Dec; 43(24):6073-6076. PubMed ID: 30548007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravitational wave detection using laser interferometry beyond the standard quantum limit.
    Heurs M
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shot-noise-limit performance of a weak-light phase readout system for intersatellite heterodyne interferometry.
    Jiang YZ; Jin XL; Yeh HC; Liang YR
    Opt Express; 2021 Jun; 29(12):18336-18350. PubMed ID: 34154092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced on-chip phase measurement by inverse weak value amplification.
    Song M; Steinmetz J; Zhang Y; Nauriyal J; Lyons K; Jordan AN; Cardenas J
    Nat Commun; 2021 Oct; 12(1):6247. PubMed ID: 34716353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear atom interferometer surpasses classical precision limit.
    Gross C; Zibold T; Nicklas E; Estève J; Oberthaler MK
    Nature; 2010 Apr; 464(7292):1165-9. PubMed ID: 20357767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beating the classical precision limit with spin-1 Dicke states of more than 10,000 atoms.
    Zou YQ; Wu LN; Liu Q; Luo XY; Guo SF; Cao JH; Tey MK; You L
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6381-6385. PubMed ID: 29858344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of a quantum-enhanced fiber Sagnac interferometer.
    Mehmet M; Eberle T; Steinlechner S; Vahlbruch H; Schnabel R
    Opt Lett; 2010 May; 35(10):1665-7. PubMed ID: 20479843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subhertz linewidth laser by locking to a fiber delay line.
    Dong J; Hu Y; Huang J; Ye M; Qu Q; Li T; Liu L
    Appl Opt; 2015 Feb; 54(5):1152-6. PubMed ID: 25968034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection.
    McKenzie K; Shaddock DA; McClelland DE; Buchler BC; Lam PK
    Phys Rev Lett; 2002 Jun; 88(23):231102. PubMed ID: 12059348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Interferometer Combining Squeezing and Parametric Amplification.
    Zuo X; Yan Z; Feng Y; Ma J; Jia X; Xie C; Peng K
    Phys Rev Lett; 2020 May; 124(17):173602. PubMed ID: 32412253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer.
    Hechenblaikner G
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):941-7. PubMed ID: 23695326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shot-noise-limited laser power stabilization for the AEI 10  m Prototype interferometer.
    Junker J; Oppermann P; Willke B
    Opt Lett; 2017 Feb; 42(4):755-758. PubMed ID: 28198864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 10-pm-order mechanical displacement measurements using heterodyne interferometry.
    Dong Nguyen T; Higuchi M; Tung Vu T; Wei D; Aketagawa M
    Appl Opt; 2020 Sep; 59(27):8478-8485. PubMed ID: 32976439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of Classical Measurement Noise via Quantum-Dense Metrology.
    Ast M; Steinlechner S; Schnabel R
    Phys Rev Lett; 2016 Oct; 117(18):180801. PubMed ID: 27835020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-shot-noise-limited phase estimation via SU(1,1) interferometer with thermal states.
    Ma X; You C; Adhikari S; Matekole ES; Glasser RT; Lee H; Dowling JP
    Opt Express; 2018 Jul; 26(14):18492-18504. PubMed ID: 30114028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-Dependent Squeezing for Advanced LIGO.
    McCuller L; Whittle C; Ganapathy D; Komori K; Tse M; Fernandez-Galiana A; Barsotti L; Fritschel P; MacInnis M; Matichard F; Mason K; Mavalvala N; Mittleman R; Yu H; Zucker ME; Evans M
    Phys Rev Lett; 2020 May; 124(17):171102. PubMed ID: 32412252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization-based truncated SU(1,1) interferometer based on four-wave mixing in Rb vapor.
    Prajapati N; Novikova I
    Opt Lett; 2019 Dec; 44(24):5921-5924. PubMed ID: 32628186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term stabilization of a heterodyne metrology interferometer down to a noise level of 20 pm over an hour.
    Niwa Y; Arai K; Ueda A; Sakagami M; Gouda N; Kobayashi Y; Yamada Y; Yano T
    Appl Opt; 2009 Nov; 48(32):6105-10. PubMed ID: 19904306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser Power Stabilization beyond the Shot Noise Limit Using Squeezed Light.
    Vahlbruch H; Wilken D; Mehmet M; Willke B
    Phys Rev Lett; 2018 Oct; 121(17):173601. PubMed ID: 30411965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.