These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31042304)

  • 1. Scaffold-Based Delivery of Nucleic Acid Therapeutics for Enhanced Bone and Cartilage Repair.
    Kelly DC; Raftery RM; Curtin CM; O'Driscoll CM; O'Brien FJ
    J Orthop Res; 2019 Aug; 37(8):1671-1680. PubMed ID: 31042304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage.
    Raisin S; Belamie E; Morille M
    Biomaterials; 2016 Oct; 104():223-37. PubMed ID: 27467418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable cartilage tissue engineering.
    Elisseeff J
    Expert Opin Biol Ther; 2004 Dec; 4(12):1849-59. PubMed ID: 15571448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene- and RNAi-activated scaffolds for bone tissue engineering: Current progress and future directions.
    Laird NZ; Acri TM; Tingle K; Salem AK
    Adv Drug Deliv Rev; 2021 Jul; 174():613-627. PubMed ID: 34015421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in skeletal tissue engineering with hydrogels.
    Elisseeff J; Puleo C; Yang F; Sharma B
    Orthod Craniofac Res; 2005 Aug; 8(3):150-61. PubMed ID: 16022717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivering Nucleic-Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives.
    Raftery RM; Walsh DP; Castaño IM; Heise A; Duffy GP; Cryan SA; O'Brien FJ
    Adv Mater; 2016 Jul; 28(27):5447-69. PubMed ID: 26840618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration.
    Yang S; Qian Z; Liu D; Wen N; Xu J; Guo X
    Cell Tissue Bank; 2019 Jun; 20(2):209-220. PubMed ID: 30854603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Therapy to Enhance Bone and Cartilage Repair in Orthopaedic Surgery.
    Bougioukli S; Evans CH; Alluri RK; Ghivizzani SC; Lieberman JR
    Curr Gene Ther; 2018; 18(3):154-170. PubMed ID: 29637858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Baculovirus as a gene delivery vector for cartilage and bone tissue engineering.
    Lin CY; Lu CH; Luo WY; Chang YH; Sung LY; Chiu HY; Hu YC
    Curr Gene Ther; 2010 Jun; 10(3):242-54. PubMed ID: 20426760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress of Regenerative Therapy in Orthopedics.
    Pearlin ; Nayak S; Manivasagam G; Sen D
    Curr Osteoporos Rep; 2018 Apr; 16(2):169-181. PubMed ID: 29488062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult stem cells in bone and cartilage tissue engineering.
    Salgado AJ; Oliveira JT; Pedro AJ; Reis RL
    Curr Stem Cell Res Ther; 2006 Sep; 1(3):345-64. PubMed ID: 18220879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration.
    Huang H; Zhang X; Hu X; Shao Z; Zhu J; Dai L; Man Z; Yuan L; Chen H; Zhou C; Ao Y
    Biomaterials; 2014 Dec; 35(36):9608-19. PubMed ID: 25176065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-printed scaffolds with calcified layer for osteochondral tissue engineering.
    Li Z; Jia S; Xiong Z; Long Q; Yan S; Hao F; Liu J; Yuan Z
    J Biosci Bioeng; 2018 Sep; 126(3):389-396. PubMed ID: 29685821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone Regeneration Using Gene-Activated Matrices.
    D'Mello S; Atluri K; Geary SM; Hong L; Elangovan S; Salem AK
    AAPS J; 2017 Jan; 19(1):43-53. PubMed ID: 27655418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenchymal stem cells for cartilage engineering.
    Huselstein C; Li Y; He X
    Biomed Mater Eng; 2012; 22(1-3):69-80. PubMed ID: 22766704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene therapy methods in bone and joint disorders. Evaluation of the adeno-associated virus vector in experimental models of articular cartilage disorders, periprosthetic osteolysis and bone healing.
    Ulrich-Vinther M
    Acta Orthop Suppl; 2007 Apr; 78(325):1-64. PubMed ID: 17427340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.