BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31042360)

  • 1. RNA-Catalyzed Polymerization of Deoxyribose, Threose, and Arabinose Nucleic Acids.
    Horning DP; Bala S; Chaput JC; Joyce GF
    ACS Synth Biol; 2019 May; 8(5):955-961. PubMed ID: 31042360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Threose Nucleic Acid Enzyme with RNA Ligase Activity.
    Wang Y; Wang Y; Song D; Sun X; Zhang Z; Li X; Li Z; Yu H
    J Am Chem Soc; 2021 Jun; 143(21):8154-8163. PubMed ID: 34028252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Nucleic Acid Sequence That is Catalytically Active in Both RNA and TNA Backbones.
    Wei D; Wang Y; Song D; Zhang Z; Wang J; Chen JY; Li Z; Yu H
    ACS Synth Biol; 2022 Nov; 11(11):3874-3885. PubMed ID: 36278399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of threose nucleoside units on the catalytic activity of a hammerhead ribozyme.
    Kempeneers V; Froeyen M; Vastmans K; Herdewijn P
    Chem Biodivers; 2004 Jan; 1(1):112-23. PubMed ID: 17191779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA polymerase-mediated DNA synthesis on a TNA template.
    Chaput JC; Ichida JK; Szostak JW
    J Am Chem Soc; 2003 Jan; 125(4):856-7. PubMed ID: 12537469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An In Vitro Selection Protocol for Threose Nucleic Acid (TNA) Using DNA Display.
    Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.8.1-19. PubMed ID: 24961723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostability Trends of TNA:DNA Duplexes Reveal Strong Purine Dependence.
    Lackey HH; Peterson EM; Chen Z; Harris JM; Heemstra JM
    ACS Synth Biol; 2019 May; 8(5):1144-1152. PubMed ID: 30964657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription.
    Dunn MR; Larsen AC; Zahurancik WJ; Fahmi NE; Meyers M; Suo Z; Chaput JC
    J Am Chem Soc; 2015 Apr; 137(12):4014-7. PubMed ID: 25785966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.
    Dunn MR; Chaput JC
    Chembiochem; 2016 Oct; 17(19):1804-1808. PubMed ID: 27383648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the chemical diversity of TNA with tUTP derivatives that are substrates for a TNA polymerase.
    Mei H; Chaput JC
    Chem Commun (Camb); 2018 Jan; 54(10):1237-1240. PubMed ID: 29340357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence that GNA and TNA were not sequential polymers in the prebiotic evolution of RNA.
    Yang YW; Zhang S; McCullum EO; Chaput JC
    J Mol Evol; 2007 Sep; 65(3):289-95. PubMed ID: 17828568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Prebiotic Synthesis of α-Threofuranosyl Cytidine by Photochemical Anomerization.
    Colville BWF; Powner MW
    Angew Chem Int Ed Engl; 2021 May; 60(19):10526-10530. PubMed ID: 33644959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Scalable Synthesis of α-L-Threose Nucleic Acid Monomers.
    Sau SP; Fahmi NE; Liao JY; Bala S; Chaput JC
    J Org Chem; 2016 Mar; 81(6):2302-7. PubMed ID: 26895480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro selection system for TNA.
    Ichida JK; Zou K; Horhota A; Yu B; McLaughlin LW; Szostak JW
    J Am Chem Soc; 2005 Mar; 127(9):2802-3. PubMed ID: 15740086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a Fluorescent Cytidine TNA Triphosphate Analogue.
    Mei H; Chaput J
    Methods Mol Biol; 2019; 1973():27-37. PubMed ID: 31016694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High fidelity TNA synthesis by Therminator polymerase.
    Ichida JK; Horhota A; Zou K; McLaughlin LW; Szostak JW
    Nucleic Acids Res; 2005; 33(16):5219-25. PubMed ID: 16157867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Insights into Conformation Differences between DNA/TNA and RNA/TNA Chimeric Duplexes.
    Anosova I; Kowal EA; Sisco NJ; Sau S; Liao JY; Bala S; Rozners E; Egli M; Chaput JC; Van Horn WD
    Chembiochem; 2016 Sep; 17(18):1705-8. PubMed ID: 27347671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A parallel stranded G-quadruplex composed of threose nucleic acid (TNA).
    Liao JY; Anosova I; Bala S; Van Horn WD; Chaput JC
    Biopolymers; 2017 Mar; 107(3):. PubMed ID: 27718227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonenzymatic oligomerization of RNA by TNA templates.
    Heuberger BD; Switzer C
    Org Lett; 2006 Dec; 8(25):5809-11. PubMed ID: 17134278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.