These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31042366)

  • 1. Enzyme-Driven Assembly and Disassembly of Hybrid DNA-RNA Nanotubes.
    Agarwal S; Franco E
    J Am Chem Soc; 2019 May; 141(19):7831-7841. PubMed ID: 31042366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic self-assembly of compartmentalized DNA nanotubes.
    Agarwal S; Klocke MA; Pungchai PE; Franco E
    Nat Commun; 2021 Jun; 12(1):3557. PubMed ID: 34117248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous dynamic control of DNA nanostructure self-assembly.
    Green LN; Subramanian HKK; Mardanlou V; Kim J; Hariadi RF; Franco E
    Nat Chem; 2019 Jun; 11(6):510-520. PubMed ID: 31011170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro.
    Sorrentino D; Ranallo S; Ricci F; Franco E
    Nat Commun; 2024 Oct; 15(1):8561. PubMed ID: 39362892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical assembly and modeling of DNA nanotube networks using Y-shaped DNA origami seeds.
    Jiang Y; Pacella MS; Lee S; Zhang J; Gunn JA; Vallejo P; Singh P; Hou T; Liu E; Schulman R
    Nanoscale; 2024 Jun; 16(24):11688-11695. PubMed ID: 38860495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconfiguring DNA Nanotube Architectures
    Schaffter SW; Schneider J; Agrawal DK; Pacella MS; Rothchild E; Murphy T; Schulman R
    ACS Nano; 2020 Oct; 14(10):13451-13462. PubMed ID: 33048538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures.
    Schaffter SW; Green LN; Schneider J; Subramanian HKK; Schulman R; Franco E
    Nucleic Acids Res; 2018 Jun; 46(10):5332-5343. PubMed ID: 29718412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directing self-assembly of DNA nanotubes using programmable seeds.
    Mohammed AM; Schulman R
    Nano Lett; 2013 Sep; 13(9):4006-13. PubMed ID: 23919535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Characterization of RNA Nanotubes.
    Stewart JM; Geary C; Franco E
    ACS Nano; 2019 May; 13(5):5214-5221. PubMed ID: 31007017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and characterization of programmable DNA nanotubes.
    Rothemund PW; Ekani-Nkodo A; Papadakis N; Kumar A; Fygenson DK; Winfree E
    J Am Chem Soc; 2004 Dec; 126(50):16344-52. PubMed ID: 15600335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimalist Design of Wireframe DNA Nanotubes: Tunable Geometry, Size, Chirality, and Dynamics.
    Luo X; Saliba D; Yang T; Gentile S; Mori K; Islas P; Das T; Bagheri N; Porchetta A; Guarne A; Cosa G; Sleiman HF
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202309869. PubMed ID: 37610293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-bonded nanotubes as a model for DNA transcription.
    Sajfert V; Dajić R; Tosić B
    J Nanosci Nanotechnol; 2004 Sep; 4(7):886-90. PubMed ID: 15570977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Nanotubes with Hydrophobic Environments: Toward New Platforms for Guest Encapsulation and Cellular Delivery.
    Rahbani JF; Vengut-Climent E; Chidchob P; Gidi Y; Trinh T; Cosa G; Sleiman HF
    Adv Healthc Mater; 2018 Mar; 7(6):e1701049. PubMed ID: 29356412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of metal-DNA triangles and DNA nanotubes with synthetic junctions.
    Yang H; Lo PK; McLaughlin CK; Hamblin GD; Aldaye FA; Sleiman HF
    Methods Mol Biol; 2011; 749():33-47. PubMed ID: 21674363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducible site-selective bottom-up assembly of virus-derived nanotube arrays on RNA-equipped wafers.
    Mueller A; Eber FJ; Azucena C; Petershans A; Bittner AM; Gliemann H; Jeske H; Wege C
    ACS Nano; 2011 Jun; 5(6):4512-20. PubMed ID: 21591634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA self-assembly and RNA nanotechnology.
    Grabow WW; Jaeger L
    Acc Chem Res; 2014 Jun; 47(6):1871-80. PubMed ID: 24856178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DNA-Based Molecular System That Can Autonomously Add and Extract Components.
    Yang D; Wang P
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):41004-41011. PubMed ID: 34412465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of precisely defined DNA nanotube superstructures using DNA origami seeds.
    Mohammed AM; Velazquez L; Chisenhall A; Schiffels D; Fygenson DK; Schulman R
    Nanoscale; 2017 Jan; 9(2):522-526. PubMed ID: 27957574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gigadalton-scale shape-programmable DNA assemblies.
    Wagenbauer KF; Sigl C; Dietz H
    Nature; 2017 Dec; 552(7683):78-83. PubMed ID: 29219966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.