These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31042366)

  • 41. Controllable molecular motors engineered from myosin and RNA.
    Omabegho T; Gurel PS; Cheng CY; Kim LY; Ruijgrok PV; Das R; Alushin GM; Bryant Z
    Nat Nanotechnol; 2018 Jan; 13(1):34-40. PubMed ID: 29109539
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Capture and manipulation of hybrid DNAs by carbon nanotube bundles.
    Li Z; Yang W
    Nanotechnology; 2010 May; 21(19):195301. PubMed ID: 20400825
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure, recognition properties, and flexibility of the DNA.RNA hybrid.
    Noy A; Pérez A; Márquez M; Luque FJ; Orozco M
    J Am Chem Soc; 2005 Apr; 127(13):4910-20. PubMed ID: 15796556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship.
    Seeman NC
    Biochemistry; 2003 Jun; 42(24):7259-69. PubMed ID: 12809482
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Handhold-Mediated Strand Displacement: A Nucleic Acid Based Mechanism for Generating Far-from-Equilibrium Assemblies through Templated Reactions.
    Cabello-Garcia J; Bae W; Stan GV; Ouldridge TE
    ACS Nano; 2021 Feb; 15(2):3272-3283. PubMed ID: 33470806
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DNA constraints allow rational control of macromolecular conformation.
    Miduturu CV; Silverman SK
    J Am Chem Soc; 2005 Jul; 127(29):10144-5. PubMed ID: 16028906
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology.
    Bui MN; Brittany Johnson M; Viard M; Satterwhite E; Martins AN; Li Z; Marriott I; Afonin KA; Khisamutdinov EF
    Nanomedicine; 2017 Apr; 13(3):1137-1146. PubMed ID: 28064006
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Programming Dissipation Systems by DNA Timer for Temporally Regulating Enzyme Catalysis and Nanostructure Assembly.
    Qin Z; Liu Y; Zhang L; Liu J; Su X
    ACS Nano; 2022 Sep; 16(9):14274-14283. PubMed ID: 36102909
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleic Acid Engineering: RNA Following the Trail of DNA.
    Kim H; Park Y; Kim J; Jeong J; Han S; Lee JS; Lee JB
    ACS Comb Sci; 2016 Feb; 18(2):87-99. PubMed ID: 26735596
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA-based assembly lines and nanofactories.
    Simmel FC
    Curr Opin Biotechnol; 2012 Aug; 23(4):516-21. PubMed ID: 22237015
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescent monitoring of RNA assembly and processing using the split-spinach aptamer.
    Rogers TA; Andrews GE; Jaeger L; Grabow WW
    ACS Synth Biol; 2015 Feb; 4(2):162-6. PubMed ID: 24932527
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Decoding the conformation-linked functional properties of nucleic acids by the use of computational tools.
    Iacovelli F; Falconi M
    FEBS J; 2015 Sep; 282(17):3298-310. PubMed ID: 25940731
    [TBL] [Abstract][Full Text] [Related]  

  • 53. DNA self-assembly for nanomedicine.
    Chhabra R; Sharma J; Liu Y; Rinker S; Yan H
    Adv Drug Deliv Rev; 2010 Apr; 62(6):617-25. PubMed ID: 20230866
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-assembly of repeat proteins: Concepts and design of new interfaces.
    Sanchez-deAlcazar D; Mejias SH; Erazo K; Sot B; Cortajarena AL
    J Struct Biol; 2018 Feb; 201(2):118-129. PubMed ID: 28890161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomistic to continuum model for studying mechanical properties of RNA nanotubes.
    Badu S; Prabhakar S; Melnik R; Singh S
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):396-407. PubMed ID: 32116031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-assembly of three-dimensional DNA nanostructures and potential biological applications.
    Lo PK; Metera KL; Sleiman HF
    Curr Opin Chem Biol; 2010 Oct; 14(5):597-607. PubMed ID: 20869905
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates.
    Chapman R; Danial M; Koh ML; Jolliffe KA; Perrier S
    Chem Soc Rev; 2012 Sep; 41(18):6023-41. PubMed ID: 22875035
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nucleic acid transport through carbon nanotube membranes.
    Yeh IC; Hummer G
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12177-82. PubMed ID: 15302940
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biomolecule-directed assembly of self-supported, nanoporous, conductive, and luminescent single-walled carbon nanotube scaffolds.
    Ostojic GN; Hersam MC
    Small; 2012 Jun; 8(12):1840-5. PubMed ID: 22461319
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal structure of an 82-nucleotide RNA-DNA complex formed by the 10-23 DNA enzyme.
    Nowakowski J; Shim PJ; Prasad GS; Stout CD; Joyce GF
    Nat Struct Biol; 1999 Feb; 6(2):151-6. PubMed ID: 10048927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.