BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31042375)

  • 1. Conformation and Permeability: Cyclic Hexapeptide Diastereomers.
    Ono S; Naylor MR; Townsend CE; Okumura C; Okada O; Lokey RS
    J Chem Inf Model; 2019 Jun; 59(6):2952-2963. PubMed ID: 31042375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers.
    Rezai T; Yu B; Millhauser GL; Jacobson MP; Lokey RS
    J Am Chem Soc; 2006 Mar; 128(8):2510-1. PubMed ID: 16492015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rationalization of the Membrane Permeability Differences in a Series of Analogue Cyclic Decapeptides.
    Witek J; Wang S; Schroeder B; Lingwood R; Dounas A; Roth HJ; Fouché M; Blatter M; Lemke O; Keller B; Riniker S
    J Chem Inf Model; 2019 Jan; 59(1):294-308. PubMed ID: 30457855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular descriptors suggest stapling as a strategy for optimizing membrane permeability of cyclic peptides.
    Li J; Kannan S; Aronica P; Brown CJ; Partridge AW; Verma CS
    J Chem Phys; 2022 Feb; 156(6):065101. PubMed ID: 35168356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclosporin A: Conformational Complexity and Chameleonicity.
    Ono S; Naylor MR; Townsend CE; Okumura C; Okada O; Lee HW; Lokey RS
    J Chem Inf Model; 2021 Nov; 61(11):5601-5613. PubMed ID: 34672629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Flexibility, Lipophilicity, and the Location of Polar Residues on the Passive Membrane Permeability of a Series of Cyclic Decapeptides.
    Wang S; König G; Roth HJ; Fouché M; Rodde S; Riniker S
    J Med Chem; 2021 Sep; 64(17):12761-12773. PubMed ID: 34406766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependences of water permeation through cyclic octa-peptide nanotubes on channel length and membrane thickness.
    Liu J; Fan J; Cen M; Song X; Liu D; Zhou W; Liu Z; Yan J
    J Chem Inf Model; 2012 Aug; 52(8):2132-8. PubMed ID: 22834559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaussian accelerated molecular dynamics simulations facilitate prediction of the permeability of cyclic peptides.
    Frazee N; Billlings KR; Mertz B
    PLoS One; 2024; 19(4):e0300688. PubMed ID: 38652734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthranilic acid-containing cyclic tetrapeptides: at the crossroads of conformational rigidity and synthetic accessibility.
    Xin D; Burgess K
    Org Biomol Chem; 2016 Jun; 14(22):5049-58. PubMed ID: 27173439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic Peptide Design Guided by Residual Dipolar Couplings, J-Couplings, and Intramolecular Hydrogen Bond Analysis.
    Farley KA; Che Y; Navarro-Vázquez A; Limberakis C; Anderson D; Yan J; Shapiro M; Shanmugasundaram V; Gil RR
    J Org Chem; 2019 Apr; 84(8):4803-4813. PubMed ID: 30605335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Esterase-sensitive cyclic prodrugs of peptides: evaluation of an acyloxyalkoxy promoiety in a model hexapeptide.
    Pauletti GM; Gangwar S; Okumu FW; Siahaan TJ; Stella VJ; Borchardt RT
    Pharm Res; 1996 Nov; 13(11):1615-23. PubMed ID: 8956324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of peptides containing D-amino acids: implications on cyclization.
    Yongye AB; Li Y; Giulianotti MA; Yu Y; Houghten RA; Martínez-Mayorga K
    J Comput Aided Mol Des; 2009 Sep; 23(9):677-89. PubMed ID: 19593648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and solution structure of an S-glycosylated cyclic hexapeptide. Evidence for conformational change induced by glycosylation.
    Gerz M; Matter H; Kessler H
    Int J Pept Protein Res; 1994 Mar; 43(3):248-57. PubMed ID: 8005747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-permeable chameleonic peptides: Exploiting conformational dynamics in de novo cyclic peptide design.
    Ramelot TA; Palmer J; Montelione GT; Bhardwaj G
    Curr Opin Struct Biol; 2023 Jun; 80():102603. PubMed ID: 37178478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention prediction of peptide diastereomers in reversed-phase liquid chromatography assisted by molecular dynamics simulation.
    Tsai CW; Chen WY; Ruaan RC
    Langmuir; 2012 Sep; 28(38):13601-8. PubMed ID: 22946847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability.
    Hoang HN; Hill TA; Fairlie DP
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8385-8390. PubMed ID: 33185961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid bilayer membrane permeability mechanism of the K-Ras(G12D)-inhibitory bicyclic peptide KS-58 elucidated by molecular dynamics simulations.
    Sakamoto K; Hirokawa T
    Bioorg Med Chem Lett; 2024 Mar; 100():129649. PubMed ID: 38341162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemistry. Through a mirror, differently.
    Sheps JA
    Science; 2009 Mar; 323(5922):1679-80. PubMed ID: 19325102
    [No Abstract]   [Full Text] [Related]  

  • 19. Conformational Flexibility Is a Determinant of Permeability for Cyclosporin.
    Wang CK; Swedberg JE; Harvey PJ; Kaas Q; Craik DJ
    J Phys Chem B; 2018 Mar; 122(8):2261-2276. PubMed ID: 29400464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand Strain and Entropic Effects on the Binding of Macrocyclic and Linear Inhibitors: Molecular Modeling of Penicillopepsin Complexes.
    Suárez D; Díaz N
    J Chem Inf Model; 2017 Aug; 57(8):2045-2055. PubMed ID: 28737392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.