These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31042612)

  • 41. Hydrocarbon-Rich Groundwater above Shale-Gas Formations: A Karoo Basin Case Study.
    Eymold WK; Swana K; Moore MT; Whyte CJ; Harkness JS; Talma S; Murray R; Moortgat JB; Miller J; Vengosh A; Darrah TH
    Ground Water; 2018 Mar; 56(2):204-224. PubMed ID: 29409148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neutralization of Acidic Industrial Wastes and Fixation of Trace Element by Oil Shale Ash: Formation of a Green Product.
    Nov S; Hassid A; Barak S; Cohen H; Knop Y
    ACS Omega; 2023 Jun; 8(24):21506-21513. PubMed ID: 37360483
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Hygienic characteristics of the quality OF underground drinking water in oil-producing areas].
    Suleĭmanov RA; Valiev TK; Rakhmatullin NR; Nigmatullin IM; Gaĭsin AA
    Gig Sanit; 2014; 93(6):21-3. PubMed ID: 25950040
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Methane baseline concentrations and sources in shallow aquifers from the shale gas-prone region of the St. Lawrence lowlands (Quebec, Canada).
    Moritz A; Hélie JF; Pinti DL; Larocque M; Barnetche D; Retailleau S; Lefebvre R; Gélinas Y
    Environ Sci Technol; 2015 Apr; 49(7):4765-71. PubMed ID: 25751654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development.
    Heilweil VM; Grieve PL; Hynek SA; Brantley SL; Solomon DK; Risser DW
    Environ Sci Technol; 2015 Apr; 49(7):4057-65. PubMed ID: 25786038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fungal diversity in major oil-shale mines in China.
    Jiang S; Wang W; Xue X; Cao C; Zhang Y
    J Environ Sci (China); 2016 Mar; 41():81-89. PubMed ID: 26969053
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CO2 mineral sequestration in oil-shale wastes from Estonian power production.
    Uibu M; Uus M; Kuusik R
    J Environ Manage; 2009 Feb; 90(2):1253-60. PubMed ID: 18793821
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.
    Zhang Z; Zhang L; Li A
    Waste Manag; 2015 Apr; 38():185-93. PubMed ID: 25649918
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anthropogenic and natural methane emissions from a shale gas exploration area of Quebec, Canada.
    Pinti DL; Gelinas Y; Moritz AM; Larocque M; Sano Y
    Sci Total Environ; 2016 Oct; 566-567():1329-1338. PubMed ID: 27267724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental Simulation of Hydrocarbon Expulsion in Semi-open Systems from Variable Organic Richness Source Rocks.
    Hou L; Huang H; Yang C; Ma W
    ACS Omega; 2021 Jun; 6(22):14664-14676. PubMed ID: 34124489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioweathering of Kupferschiefer black shale (Fore-Sudetic Monocline, SW Poland) by indigenous bacteria: implication for dissolution and precipitation of minerals in deep underground mine.
    Matlakowska R; Skłodowska A; Nejbert K
    FEMS Microbiol Ecol; 2012 Jul; 81(1):99-110. PubMed ID: 22329644
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Palaeoenvironmental evolution of formation of Bayanjargalan oil shale: evidence from trace elements and biomarkers.
    Sun Y; Tsolmon D; Shan X; He W; Guo W
    Sci Rep; 2021 Feb; 11(1):4561. PubMed ID: 33633124
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Environmental risks and problems of the optimal management of an oil shale semi-coke and ash landfill in Kohtla-Järve, Estonia.
    Vallner L; Gavrilova O; Vilu R
    Sci Total Environ; 2015 Aug; 524-525():400-15. PubMed ID: 25930241
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of isotopic and geochemical signals in unconventional oil and gas reservoir produced waters toward characterizing in situ geochemical fluid-shale reactions.
    Phan TT; Hakala JA; Sharma S
    Sci Total Environ; 2020 Apr; 714():136867. PubMed ID: 32018991
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Developments in CO2 mineral carbonation of oil shale ash.
    Uibu M; Velts O; Kuusik R
    J Hazard Mater; 2010 Feb; 174(1-3):209-14. PubMed ID: 19783091
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Study on Pyrolysis-Mechanics-Seepage Behavior of Oil Shale in a Closed System Subject to Real-Time Temperature Variations.
    Wang L; Su J; Yang D
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955300
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments.
    Mõtlep R; Sild T; Puura E; Kirsimäe K
    J Hazard Mater; 2010 Dec; 184(1-3):567-573. PubMed ID: 20855159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular Dynamics Simulations of Oil-Water Wetting Models of Organic Matter and Minerals in Shale at the Nanometer Scale.
    Dong Z; Xue H; Li B; Tian S; Lu S; Lu S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):85-97. PubMed ID: 33213615
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands.
    Kaasik A; Vohla C; Mõtlep R; Mander U; Kirsimäe K
    Water Res; 2008 Feb; 42(4-5):1315-23. PubMed ID: 17959214
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A method for screening groundwater vulnerability from subsurface hydrocarbon extraction practices.
    Loveless SE; Lewis MA; Bloomfield JP; Davey I; Ward RS; Hart A; Stuart ME
    J Environ Manage; 2019 Nov; 249():109349. PubMed ID: 31434049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.