These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31042914)

  • 1. Identification of kinetic order parameters for non-equilibrium dynamics.
    Paul F; Wu H; Vossel M; de Groot BL; Noé F
    J Chem Phys; 2019 Apr; 150(16):164120. PubMed ID: 31042914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational Koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations.
    Wu H; Nüske F; Paul F; Klus S; Koltai P; Noé F
    J Chem Phys; 2017 Apr; 146(15):154104. PubMed ID: 28433026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-Lagged Independent Component Analysis of Random Walks and Protein Dynamics.
    Schultze S; Grubmüller H
    J Chem Theory Comput; 2021 Sep; 17(9):5766-5776. PubMed ID: 34449229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for Identifying Accurate Collective Variables in Enhanced Molecular Dynamics Simulations for the Description of Structural Transformations in Flexible Metal-Organic Frameworks.
    Demuynck R; Wieme J; Rogge SMJ; Dedecker KD; Vanduyfhuys L; Waroquier M; Van Speybroeck V
    J Chem Theory Comput; 2018 Nov; 14(11):5511-5526. PubMed ID: 30336016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying the leading dynamics of ubiquitin: A comparison between the tICA and the LE4PD slow fluctuations in amino acids' position.
    Beyerle ER; Guenza MG
    J Chem Phys; 2021 Dec; 155(24):244108. PubMed ID: 34972386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Commute Maps: Separating Slowly Mixing Molecular Configurations for Kinetic Modeling.
    Noé F; Banisch R; Clementi C
    J Chem Theory Comput; 2016 Nov; 12(11):5620-5630. PubMed ID: 27696838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of slow molecular order parameters for Markov model construction.
    Pérez-Hernández G; Paul F; Giorgino T; De Fabritiis G; Noé F
    J Chem Phys; 2013 Jul; 139(1):015102. PubMed ID: 23822324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Path Classification Algorithm Based on Variational Autoencoder to Identify Metastable Path Channels for Complex Conformational Changes.
    Qiu Y; O'Connor MS; Xue M; Liu B; Huang X
    J Chem Theory Comput; 2023 Jul; 19(14):4728-4742. PubMed ID: 37382437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic distance and kinetic maps from molecular dynamics simulation.
    Noé F; Clementi C
    J Chem Theory Comput; 2015 Oct; 11(10):5002-11. PubMed ID: 26574285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated detection of many-particle solvation states for accurate characterizations of diffusion kinetics.
    Rudzinski JF; Radu M; Bereau T
    J Chem Phys; 2019 Jan; 150(2):024102. PubMed ID: 30646696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-time methods for molecular dynamics simulations: Markov State Models and Milestoning.
    Narayan B; Yuan Y; Fathizadeh A; Elber R; Buchete NV
    Prog Mol Biol Transl Sci; 2020; 170():215-237. PubMed ID: 32145946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collective variables for the study of long-time kinetics from molecular trajectories: theory and methods.
    Noé F; Clementi C
    Curr Opin Struct Biol; 2017 Apr; 43():141-147. PubMed ID: 28327454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information Bottleneck Approach for Markov Model Construction.
    Wang D; Qiu Y; Beyerle ER; Huang X; Tiwary P
    J Chem Theory Comput; 2024 Jun; 20(12):5352-5367. PubMed ID: 38859575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Deciphered Molecular Mechanistics with Accurate Kinetic and Thermodynamic Prediction.
    Dong J; Wang S; Cui W; Sun X; Guo H; Yan H; Vogel H; Wang Z; Yuan S
    J Chem Theory Comput; 2024 Jun; 20(11):4499-4513. PubMed ID: 38394691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VAMPnets for deep learning of molecular kinetics.
    Mardt A; Pasquali L; Wu H; Noé F
    Nat Commun; 2018 Jan; 9(1):5. PubMed ID: 29295994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing steady-state and transient properties of reaction-diffusion systems.
    Dorosz S; Pleimling M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061114. PubMed ID: 20365125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GraphVAMPnets for uncovering slow collective variables of self-assembly dynamics.
    Liu B; Xue M; Qiu Y; Konovalov KA; O'Connor MS; Huang X
    J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37655771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variational embedding of protein folding simulations using Gaussian mixture variational autoencoders.
    Ghorbani M; Prasad S; Klauda JB; Brooks BR
    J Chem Phys; 2021 Nov; 155(19):194108. PubMed ID: 34800961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning.
    Konovalov KA; Unarta IC; Cao S; Goonetilleke EC; Huang X
    JACS Au; 2021 Sep; 1(9):1330-1341. PubMed ID: 34604842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.