These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 31042939)

  • 1. A distributed cooperative approach for unmanned aerial vehicle flocking.
    Jia Y; Li Q; Zhang W
    Chaos; 2019 Apr; 29(4):043118. PubMed ID: 31042939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H; Liang Z; Zhu M; Hu X; Wang G
    PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distributed adaptive fault-tolerant close formation flight control of multiple trailing fixed-wing UAVs.
    Yu Z; Zhang Y; Jiang B; Yu X; Fu J; Jin Y; Chai T
    ISA Trans; 2020 Nov; 106():181-199. PubMed ID: 32680604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive decentralized flocking control of multi-UAV circular formations based on vector fields and backstepping.
    Muslimov TZ; Munasypov RA
    ISA Trans; 2020 Dec; 107():143-159. PubMed ID: 32863052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments.
    Qiu H; Duan H
    ISA Trans; 2017 Nov; 71(Pt 1):93-102. PubMed ID: 28760496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
    Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS
    Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Q-Learning Approach to Flocking With UAVs in a Stochastic Environment.
    Hung SM; Givigi SN
    IEEE Trans Cybern; 2017 Jan; 47(1):186-197. PubMed ID: 26742155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Starling-Behavior-Inspired Flocking Control of Fixed-Wing Unmanned Aerial Vehicle Swarm in Complex Environments with Dynamic Obstacles.
    Wu W; Zhang X; Miao Y
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36546914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Semi-Physical Platform for Guidance and Formations of Fixed-Wing Unmanned Aerial Vehicles.
    Yang J; Thomas AG; Singh S; Baldi S; Wang X
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended observer based on adaptive second order sliding mode control for a fixed wing UAV.
    Castañeda H; Salas-Peña OS; León-Morales J
    ISA Trans; 2017 Jan; 66():226-232. PubMed ID: 27665143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Optimal Routing Algorithm for Unmanned Aerial Vehicles.
    Kim S; Kwak JH; Oh B; Lee DH; Lee D
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Features of Invariant Extended Kalman Filter Applied to Unmanned Aerial Vehicle Navigation.
    Ko NY; Youn W; Choi IH; Song G; Kim TS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30158506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time.
    Avellar GS; Pereira GA; Pimenta LC; Iscold P
    Sensors (Basel); 2015 Nov; 15(11):27783-803. PubMed ID: 26540055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internet-Of-Things in Motion: A UAV Coalition Model for Remote Sensing in Smart Cities.
    Ismail A; Bagula BA; Tuyishimire E
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29986470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flocking of quad-rotor UAVs with fuzzy control.
    Mao X; Zhang H; Wang Y
    ISA Trans; 2018 Mar; 74():185-193. PubMed ID: 29397955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Multidimensional Repulsive Potential Field to Avoid Obstacles by Nonholonomic UAVs in Dynamic Environments.
    Kownacki C; Ambroziak L
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auto-landing of fixed wing unmanned aerial vehicles using the backstepping control.
    Lungu M
    ISA Trans; 2019 Dec; 95():194-210. PubMed ID: 31171303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.
    Wang X; Jiang P; Li D; Sun T
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28925960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Airborne gamma-ray mapping using fixed-wing vertical take-off and landing (VTOL) uncrewed aerial vehicles.
    Woodbridge E; Connor DT; Verbelen Y; Hine D; Richardson T; Scott TB
    Front Robot AI; 2023; 10():1137763. PubMed ID: 37448876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal Polygon Decomposition for UAV Survey Coverage Path Planning in Wind.
    Coombes M; Fletcher T; Chen WH; Liu C
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.