BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31042976)

  • 1. Non-contact T-type Raman method for measurement of thermophysical properties of micro-/nanowires.
    Liu J; Liu H; Ma W; Zhang X
    Rev Sci Instrum; 2019 Apr; 90(4):044901. PubMed ID: 31042976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser flash-Raman spectroscopy method for the measurement of the thermal properties of micro/nano wires.
    Liu J; Wang H; Hu Y; Ma W; Zhang X
    Rev Sci Instrum; 2015 Jan; 86(1):014901. PubMed ID: 25638107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman Measurement of Heat Transfer in Suspended Individual Carbon Nanotube.
    Wang HD; Liu JH; Zhang X; Zhang RF; Wei F
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2939-43. PubMed ID: 26353517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method.
    Li QY; Xia K; Zhang J; Zhang Y; Li Q; Takahashi K; Zhang X
    Nanoscale; 2017 Aug; 9(30):10784-10793. PubMed ID: 28726940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurement of thermal conductivity and thermal contact resistance of individual carbon fibers using Raman spectroscopy.
    Liu J; Wang H; Ma W; Zhang X; Song Y
    Rev Sci Instrum; 2013 Apr; 84(4):044901. PubMed ID: 23635221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser Flash Raman Spectroscopy Method for Characterizing the Specific Heat of a Single Nanoparticle.
    Fan A; Li Q; Ma W; Zhang X
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7004-7013. PubMed ID: 31039853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing Thermal Flux in Twinned Ge Nanowires through Raman Spectroscopy.
    Majumdar D; Biswas S; Ghoshal T; Holmes JD; Singha A
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24679-85. PubMed ID: 26466791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous measurement of thermal conductivity and thermal diffusivity of individual microwires by using a cross-wire geometry.
    Chen H; Sun H; Chen L; Chen Y; Chen J; Qiu X; Wang J
    Rev Sci Instrum; 2022 Feb; 93(2):024901. PubMed ID: 35232137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of steady-state electrical-heating fluorescence-sensing (SEF) technique for thermal characterization of one dimensional (1D) structures by employing graphene quantum dots (GQDs) as temperature sensors.
    Wan X; Li C; Yue Y; Xie D; Xue M; Hu N
    Nanotechnology; 2016 Nov; 27(44):445706. PubMed ID: 27671086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method.
    Li Q; Liu C; Wang X; Fan S
    Nanotechnology; 2009 Apr; 20(14):145702. PubMed ID: 19420532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Novel Thermal Diffusivity Analysis by Spot Periodic Heating and Infrared Radiation Thermometer Method.
    Nagata S; Nishi T; Miyake S; Azuma N; Hatori K; Awano T; Ohta H
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the thermal conductivity of a single carbon nanotube.
    Fujii M; Zhang X; Xie H; Ago H; Takahashi K; Ikuta T; Abe H; Shimizu T
    Phys Rev Lett; 2005 Aug; 95(6):065502. PubMed ID: 16090962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of thermophysical properties of human dentin: effect of open porosity.
    Figueiredo de Magalhães M; Neto Ferreira RA; Grossi PA; de Andrade RM
    J Dent; 2008 Aug; 36(8):588-94. PubMed ID: 18547708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the thermal flash technique for low thermal diffusivity micro/nanofibers.
    Demko MT; Dai Z; Yan H; King WP; Cakmak M; Abramson AR
    Rev Sci Instrum; 2009 Mar; 80(3):036103. PubMed ID: 19334958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical absorptance measurement of an individual multiwall carbon nanotube using a T type thermal probe method.
    Li QY; Liu JH; Wang HD; Zhang X; Takahashi K
    Rev Sci Instrum; 2013 Oct; 84(10):104905. PubMed ID: 24182149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of thermal effusivity of a fine wire and contact resistance of a junction using a T type probe.
    Wang J; Gu M; Zhang X; Wu G
    Rev Sci Instrum; 2009 Jul; 80(7):076107. PubMed ID: 19655992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the thermal conductivities of suspended MoS
    Wang R; Wang T; Zobeiri H; Yuan P; Deng C; Yue Y; Xu S; Wang X
    Nanoscale; 2018 Dec; 10(48):23087-23102. PubMed ID: 30511715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A micro-pipette thermal sensing technique for measuring the thermal conductivity of non-volatile fluids.
    Shrestha R; Atluri R; Simmons DP; Kim DS; Choi TY
    Rev Sci Instrum; 2018 Nov; 89(11):114902. PubMed ID: 30501312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single nanowire thermal conductivity measurements by Raman thermography.
    Doerk GS; Carraro C; Maboudian R
    ACS Nano; 2010 Aug; 4(8):4908-14. PubMed ID: 20731463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.