These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 31043114)
61. Gene amplification: the Chinese hamster glutamine synthetase gene. Sanders PG; Hussein A; Coggins L; Wilson R Dev Biol Stand; 1987; 66():55-63. PubMed ID: 2884156 [TBL] [Abstract][Full Text] [Related]
62. Development of a Proline-Based Selection System for Reliable Genetic Engineering in Chinese Hamster Ovary Cells. Sun T; Kwok WC; Chua KJ; Lo TM; Potter J; Yew WS; Chesnut JD; Hwang IY; Chang MW ACS Synth Biol; 2020 Jul; 9(7):1864-1872. PubMed ID: 32470293 [TBL] [Abstract][Full Text] [Related]
63. Improved recombinant protein yield using a codon deoptimized DHFR selectable marker in a CHEF1 expression plasmid. Westwood AD; Rowe DA; Clarke HR Biotechnol Prog; 2010; 26(6):1558-66. PubMed ID: 20949444 [TBL] [Abstract][Full Text] [Related]
64. IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. Ho SC; Bardor M; Feng H; Mariati ; Tong YW; Song Z; Yap MG; Yang Y J Biotechnol; 2012 Jan; 157(1):130-9. PubMed ID: 22024589 [TBL] [Abstract][Full Text] [Related]
65. Stable microRNA expression enhances therapeutic antibody productivity of Chinese hamster ovary cells. Strotbek M; Florin L; Koenitzer J; Tolstrup A; Kaufmann H; Hausser A; Olayioye MA Metab Eng; 2013 Nov; 20():157-66. PubMed ID: 24144501 [TBL] [Abstract][Full Text] [Related]
66. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells. Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126 [TBL] [Abstract][Full Text] [Related]
67. The cloning and nucleotide sequence of cDNA for an amplified glutamine synthetase gene from the Chinese hamster. Hayward BE; Hussain A; Wilson RH; Lyons A; Woodcock V; McIntosh B; Harris TJ Nucleic Acids Res; 1986 Jan; 14(2):999-1008. PubMed ID: 2868445 [TBL] [Abstract][Full Text] [Related]
68. Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines. Ritter A; Voedisch B; Wienberg J; Wilms B; Geisse S; Jostock T; Laux H Biotechnol Bioeng; 2016 May; 113(5):1084-93. PubMed ID: 26523402 [TBL] [Abstract][Full Text] [Related]
69. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. Shen CC; Sung LY; Lin SY; Lin MW; Hu YC ACS Synth Biol; 2017 Aug; 6(8):1509-1519. PubMed ID: 28418635 [TBL] [Abstract][Full Text] [Related]
70. Effect of culture temperature on TNFR-Fc productivity in recombinant glutamine synthetase-chinese hamster ovary cells. Fan L; Zhao L; Ye Z; Sun Y; Kou T; Zhou Y; Tan WS Biotechnol Lett; 2010 Sep; 32(9):1239-44. PubMed ID: 20533076 [TBL] [Abstract][Full Text] [Related]
71. Key determinants in the occurrence of clonal variation in humanized antibody expression of cho cells during dihydrofolate reductase mediated gene amplification. Kim NS; Byun TH; Lee GM Biotechnol Prog; 2001; 17(1):69-75. PubMed ID: 11170482 [TBL] [Abstract][Full Text] [Related]
72. Effect of the glutamine synthetase inhibitor, methionine sulfoximine, on the growth and differentiation of Dictyostelium discoideum. Dunbar AJ; Wheldrake JF FEMS Microbiol Lett; 1997 Jun; 151(2):163-8. PubMed ID: 9228749 [TBL] [Abstract][Full Text] [Related]
73. Glutamine synthetase expression in rat lung is regulated by protein stability. Labow BI; Abcouwer SF; Lin CM; Souba WW Am J Physiol; 1998 Nov; 275(5):L877-86. PubMed ID: 9815104 [TBL] [Abstract][Full Text] [Related]
74. Transcriptome study and identification of potential marker genes related to the stable expression of recombinant proteins in CHO clones. Jamnikar U; Nikolic P; Belic A; Blas M; Gaser D; Francky A; Laux H; Blejec A; Baebler S; Gruden K BMC Biotechnol; 2015 Oct; 15():98. PubMed ID: 26499110 [TBL] [Abstract][Full Text] [Related]
75. A novel RNA silencing vector to improve antigen expression and stability in Chinese hamster ovary cells. Hong WW; Wu SC Vaccine; 2007 May; 25(20):4103-11. PubMed ID: 17428585 [TBL] [Abstract][Full Text] [Related]
76. Regulation of urease and ammonia assimilatory enzymes in Selenomonas ruminantium. Smith CJ; Hespell RB; Bryant MP Appl Environ Microbiol; 1981 Jul; 42(1):89-96. PubMed ID: 6114707 [TBL] [Abstract][Full Text] [Related]
77. Altered regulation of the glnRA operon in a Bacillus subtilis mutant that produces methionine sulfoximine-tolerant glutamine synthetase. Schreier HJ; Rostkowski CA; Kellner EM J Bacteriol; 1993 Feb; 175(3):892-7. PubMed ID: 8093698 [TBL] [Abstract][Full Text] [Related]
78. Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies. Chan KF; Shahreel W; Wan C; Teo G; Hayati N; Tay SJ; Tong WH; Yang Y; Rudd PM; Zhang P; Song Z Biotechnol J; 2016 Mar; 11(3):399-414. PubMed ID: 26471004 [TBL] [Abstract][Full Text] [Related]
79. Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11-derived dihydrofolate reductase deficient host cell. Hu Z; Guo D; Yip SS; Zhan D; Misaghi S; Joly JC; Snedecor BR; Shen AY Biotechnol Prog; 2013; 29(4):980-5. PubMed ID: 23606666 [TBL] [Abstract][Full Text] [Related]
80. Rapid amplification system for recombinant protein production in Chinese Hamster Ovary (CHO) Cells. Metta MK; Kunaparaju RK; Tantravahi S Cell Mol Biol (Noisy-le-grand); 2016 Feb; 62(2):101-6. PubMed ID: 26950459 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]