These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31043118)

  • 1. Rehabilitation strategy for post-stroke recovery using an innovative elbow exoskeleton.
    Manna SK; Dubey VN
    Proc Inst Mech Eng H; 2019 Jun; 233(6):668-680. PubMed ID: 31043118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechanism for elbow exoskeleton for customised training.
    Manna SK; Dubey VN
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1597-1602. PubMed ID: 28814048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical design of EFW Exo II: A hybrid exoskeleton for elbow-forearm-wrist rehabilitation.
    Bian H; Chen Z; Wang H; Zhao T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():689-694. PubMed ID: 28813900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and control of system for elbow rehabilitation: Preliminary findings.
    Mikołajczyk T; Kłodowski A; Mikołajewska E; Walkowiak P; Berjano P; Villafañe JH; Aggogeri F; Borboni A; Fausti D; Petrogalli G
    Adv Clin Exp Med; 2018 Dec; 27(12):1661-1669. PubMed ID: 30311751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NEUROExos: A powered elbow orthosis for post-stroke early neurorehabilitation.
    Cempini M; Giovacchini F; Vitiello N; Cortese M; Moisé M; Posteraro F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():342-5. PubMed ID: 24109694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving elbow torque output of stroke patients with assistive torque controlled by EMG signals.
    Cheng HS; Ju MS; Lin CC
    J Biomech Eng; 2003 Dec; 125(6):881-6. PubMed ID: 14986414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.
    Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-II Clinical Validation of a Powered Exoskeleton for the Treatment of Elbow Spasticity.
    Crea S; Cempini M; Mazzoleni S; Carrozza MC; Posteraro F; Vitiello N
    Front Neurosci; 2017; 11():261. PubMed ID: 28553200
    [No Abstract]   [Full Text] [Related]  

  • 11. Design parameters and torque profile modification of a spring-assisted hand-opening exoskeleton module.
    Butler NR; Goodwin SA; Perry JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():591-596. PubMed ID: 28813884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists.
    Nam HS; Koh S; Kim YJ; Beom J; Lee WH; Lee SU; Kim S
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2196-2203. PubMed ID: 28613178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spring operated wearable enhancer for arm rehabilitation (SpringWear) after stroke.
    Ji Chen ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4893-4896. PubMed ID: 28269367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a clinically relevant upper-limb exoskeleton robot for stroke patients with spasticity.
    Lee DJ; Bae SJ; Jang SH; Chang PH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():622-627. PubMed ID: 28813889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimanual elbow exoskeleton: Force based protocol and rehabilitation quantification.
    Alavi N; Herrnstadt G; Randhawa BK; Boyd LA; Menon C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4643-6. PubMed ID: 26737329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke.
    Liu Q; Wang C; Long JJ; Sun T; Duan L; Zhang X; Zhang B; Shen Y; Shang W; Lin Z; Wang Y; Xia J; Wei J; Li W; Wu Z
    J Healthc Eng; 2018; 2018():3867243. PubMed ID: 29736231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A springs actuated finger exoskeleton: From mechanical design to spring variables evaluation.
    Bortoletto R; Mello AN; Piovesan D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1319-1325. PubMed ID: 28814003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous hip exoskeleton saves metabolic cost of walking uphill.
    Seo K; Lee J; Park YJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():246-251. PubMed ID: 28813826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.