These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31043594)

  • 41. Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates.
    Vansco MF; Caravan RL; Zuraski K; Winiberg FAF; Au K; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Khan MAH; Shallcross DE; Taatjes CA; Lester MI
    J Phys Chem A; 2020 May; 124(18):3542-3554. PubMed ID: 32255634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.
    Drozd GT; Donahue NM
    J Phys Chem A; 2011 May; 115(17):4381-7. PubMed ID: 21476564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.
    Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC
    Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reaction of stabilized criegee intermediates from ozonolysis of limonene with water: ab initio and DFT study.
    Jiang L; Lan R; Xu YS; Zhang WJ; Yang W
    Int J Mol Sci; 2013 Mar; 14(3):5784-805. PubMed ID: 23481640
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides.
    Anglada JM; Solé A
    Phys Chem Chem Phys; 2016 Jun; 18(26):17698-712. PubMed ID: 27308802
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atmospheric Fate of Criegee Intermediate Formed During Ozonolysis of Styrene in the Presence of H
    Banu T; Sen K; Das AK
    J Phys Chem A; 2018 Oct; 122(42):8377-8389. PubMed ID: 30284830
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep tunneling in the unimolecular decay of CH
    Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2016 Dec; 145(23):234308. PubMed ID: 28010089
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Criegee Intermediates Beyond Ozonolysis: Synthetic and Mechanistic Insights.
    Hassan Z; Stahlberger M; Rosenbaum N; Bräse S
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15138-15152. PubMed ID: 33283439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy.
    Chhantyal-Pun R; Davey A; Shallcross DE; Percival CJ; Orr-Ewing AJ
    Phys Chem Chem Phys; 2015 Feb; 17(5):3617-26. PubMed ID: 25553776
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.
    Nguyen TB; Tyndall GS; Crounse JD; Teng AP; Bates KH; Schwantes RH; Coggon MM; Zhang L; Feiner P; Milller DO; Skog KM; Rivera-Rios JC; Dorris M; Olson KF; Koss A; Wild RJ; Brown SS; Goldstein AH; de Gouw JA; Brune WH; Keutsch FN; Seinfeld JH; Wennberg PO
    Phys Chem Chem Phys; 2016 Apr; 18(15):10241-54. PubMed ID: 27021601
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemistry of Functionalized Reactive Organic Intermediates in the Earth's Atmosphere: Impact, Challenges, and Progress.
    Barber VP; Kroll JH
    J Phys Chem A; 2021 Dec; 125(48):10264-10279. PubMed ID: 34846877
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reactions between hydroxyl-substituted alkylperoxy radicals and Criegee intermediates: correlations of the electronic characteristics of methyl substituents and the reactivity.
    Zhao Q; Liu F; Wang W; Li C; Lü J; Wang W
    Phys Chem Chem Phys; 2017 Jun; 19(23):15073-15083. PubMed ID: 28561077
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Atmospheric chemistry. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor.
    Chao W; Hsieh JT; Chang CH; Lin JJ
    Science; 2015 Feb; 347(6223):751-4. PubMed ID: 25569112
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cycloalkene ozonolysis: collisionally mediated mechanistic branching.
    Chuong B; Zhang J; Donahue NM
    J Am Chem Soc; 2004 Oct; 126(39):12363-73. PubMed ID: 15453770
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.
    Zhu C; Kumar M; Zhong J; Li L; Francisco JS; Zeng XC
    J Am Chem Soc; 2016 Sep; 138(35):11164-9. PubMed ID: 27509207
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Competition between HO
    Chen L; Huang Y; Xue Y; Cao J; Wang W
    J Phys Chem A; 2017 Sep; 121(37):6981-6991. PubMed ID: 28835101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energetics and mechanisms for the acetonyl radical + O
    Weidman JD; Turney JM; Schaefer HF
    J Chem Phys; 2020 Mar; 152(11):114301. PubMed ID: 32199416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanism of the atmospheric chemical transformation of acetylacetone and its implications in night-time second organic aerosol formation.
    Ji Y; Qin D; Zheng J; Shi Q; Wang J; Lin Q; Chen J; Gao Y; Li G; An T
    Sci Total Environ; 2020 Jun; 720():137610. PubMed ID: 32146400
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functionalized Hydroperoxide Formation from the Reaction of Methacrolein-Oxide, an Isoprene-Derived Criegee Intermediate, with Formic Acid: Experiment and Theory.
    Vansco MF; Zuraski K; Winiberg FAF; Au K; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Klippenstein SJ; Taatjes CA; Lester MI; Caravan RL
    Molecules; 2021 May; 26(10):. PubMed ID: 34065491
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct observation of unimolecular decay of CH3CH2CHOO Criegee intermediates to OH radical products.
    Fang Y; Liu F; Klippenstein SJ; Lester MI
    J Chem Phys; 2016 Jul; 145(4):044312. PubMed ID: 27475366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.