These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31043601)

  • 1. Hydrogen embrittlement in metallic nanowires.
    Yin S; Cheng G; Chang TH; Richter G; Zhu Y; Gao H
    Nat Commun; 2019 May; 10(1):2004. PubMed ID: 31043601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction.
    Qin Q; Yin S; Cheng G; Li X; Chang TH; Richter G; Zhu Y; Gao H
    Nat Commun; 2015 Jan; 6():5983. PubMed ID: 25585295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous Tensile Detwinning in Twinned Nanowires.
    Cheng G; Yin S; Chang TH; Richter G; Gao H; Zhu Y
    Phys Rev Lett; 2017 Dec; 119(25):256101. PubMed ID: 29303322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation-controlled distributed plasticity in penta-twinned silver nanowires.
    Filleter T; Ryu S; Kang K; Yin J; Bernal RA; Sohn K; Li S; Huang J; Cai W; Espinosa HD
    Small; 2012 Oct; 8(19):2986-93. PubMed ID: 22829327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length-dependent dual-mechanism-controlled failure modes in silver penta-twinned nanowires.
    Liang T; Zhou D; Wu Z; Shi P; Chen X
    Nanoscale; 2018 Nov; 10(44):20565-20577. PubMed ID: 30226511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of pristine and hydrogen-exposed palladium nanowires by in situ TEM.
    Carpena-Núñez J; Yang D; Kim JW; Park C; Fonseca LF
    Nanotechnology; 2013 Jan; 24(3):035701. PubMed ID: 23262467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition of Deformation Mechanisms in Single-Crystalline Metallic Nanowires.
    Yin S; Cheng G; Richter G; Gao H; Zhu Y
    ACS Nano; 2019 Aug; 13(8):9082-9090. PubMed ID: 31305984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-Induced Dislocation Nucleation and Plastic Deformation of 〈001〉 and 〈11¯0〉 Grain Boundaries in Nickel.
    Li J; Wu Z; Teng L; Deng G; Wang R; Lu C; Li W; Huang X; Liu Y
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic mechanism and prediction of hydrogen embrittlement in iron.
    Song J; Curtin WA
    Nat Mater; 2013 Feb; 12(2):145-51. PubMed ID: 23142843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete shear band plasticity through dislocation activities in body-centered cubic tungsten nanowires.
    Wang J; Wang Y; Cai W; Li J; Zhang Z; Mao SX
    Sci Rep; 2018 Mar; 8(1):4574. PubMed ID: 29545583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-ideal strength in gold nanowires achieved through microstructural design.
    Deng C; Sansoz F
    ACS Nano; 2009 Oct; 3(10):3001-8. PubMed ID: 19743833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of deformation and shape recovery of NiTi nanowires under torsion.
    Wu CD; Sung PH; Fang TH
    J Mol Model; 2013 Apr; 19(4):1883-90. PubMed ID: 23329144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-Stress Induced Embrittlement of Metals.
    Udupa A; Sugihara T; Viswanathan K; Latanision RM; Chandrasekar S
    Nano Lett; 2021 Nov; 21(22):9502-9508. PubMed ID: 34726060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.
    Narayanan S; Cheng G; Zeng Z; Zhu Y; Zhu T
    Nano Lett; 2015 Jun; 15(6):4037-44. PubMed ID: 25965858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations.
    Tang DM; Ren CL; Wang MS; Wei X; Kawamoto N; Liu C; Bando Y; Mitome M; Fukata N; Golberg D
    Nano Lett; 2012 Apr; 12(4):1898-904. PubMed ID: 22435880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of surface oxidation on the size dependent mechanical properties of nickel nanowires: a ReaxFF molecular dynamics study.
    Aral G; Islam MM; van Duin ACT
    Phys Chem Chem Phys; 2017 Dec; 20(1):284-298. PubMed ID: 29205239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ study on surface roughening in radiation-resistant Ag nanowires.
    Shang Z; Li J; Fan C; Chen Y; Li Q; Wang H; Shen TD; Zhang X
    Nanotechnology; 2018 May; 29(21):215708. PubMed ID: 29517493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Observation of Dynamic Galvanic Replacement Reactions in Twinned Metallic Nanowires by Liquid Cell Transmission Electron Microscopy.
    Zhuang C; Qi H; Cheng X; Chen G; Gao C; Wang L; Sun S; Zou J; Han X
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18627-18633. PubMed ID: 31621994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rebuilding the Strain Hardening at a Large Strain in Twinned Au Nanowires.
    Sun J; Han J; Yang Z; Liu H; Song D; Ma A; Fang L
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30340344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleation-Controlled Plasticity of Metallic Nanowires and Nanoparticles.
    Mordehai D; David O; Kositski R
    Adv Mater; 2018 Oct; 30(41):e1706710. PubMed ID: 29962014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.