These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31044274)

  • 1. Influence of various setting angles on vibration behavior of rotating graphene sheet: continuum modeling and molecular dynamics simulation.
    Akbarshahi A; Rajabpour A; Ghadiri M; Barooti MM
    J Mol Model; 2019 May; 25(5):141. PubMed ID: 31044274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of vibrational behavior of annular graphene sheet: Identification of nonlocal parameter.
    Madani SH; Sabour MH; Fadaee M
    J Mol Graph Model; 2018 Jan; 79():264-272. PubMed ID: 29288937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlocal Strain Gradient Model for the Nonlinear Static Analysis of a Circular/Annular Nanoplate.
    Sadeghian M; Palevicius A; Janusas G
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes.
    Oyarhossein MA; Alizadeh A; Habibi M; Makkiabadi M; Daman M; Safarpour H; Jung DW
    Sci Rep; 2020 Mar; 10(1):5616. PubMed ID: 32221331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the sensitivity and resonant frequency of the torsional modes of an AFM cantilever with a sidewall probe based on a nonlocal elasticity theory.
    Abbasi M; Karami Mohammadi A
    Microsc Res Tech; 2015 May; 78(5):408-15. PubMed ID: 25755027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexoelectric and size-dependent effects on hygro-thermal vibration of variable thickness fluid-infiltrated porous metal foam nanoplates.
    Thi TN; Tran VK; Pham QH
    Heliyon; 2024 Feb; 10(4):e26150. PubMed ID: 38404837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory.
    Nami MR; Janghorban M
    Beilstein J Nanotechnol; 2013 Dec; 4():968-73. PubMed ID: 24455455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear Thermal/Mechanical Buckling of Orthotropic Annular/Circular Nanoplate with the Nonlocal Strain Gradient Model.
    Sadeghian M; Palevicius A; Janusas G
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibration Analysis of a Unimorph Nanobeam with a Dielectric Layer of Both Flexoelectricity and Piezoelectricity.
    Naderi A; Quoc-Thai T; Zhuang X; Jiang X
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-scale effects on the radial vibration of an elastic nanosphere based on nonlocal strain gradient theory.
    Ducottet S; El Baroudi A
    Nanotechnology; 2023 Jan; 34(11):. PubMed ID: 36595326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration Characteristics of Magnetostrictive Composite Cantilever Resonator with Nonlocal Effect.
    Xu Y; Shang X; Xu K
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive boundary control of a vibrating cantilever nanobeam considering small scale effects.
    Yue X; Song Y; Zou J; He W
    ISA Trans; 2020 Oct; 105():77-85. PubMed ID: 32616355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of nonlocal models to nano beams. Part I: Axial length scale effect.
    Kim JS
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7592-6. PubMed ID: 25942831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory.
    Sahmani S; Aghdam MM
    J Biomech; 2017 Dec; 65():49-60. PubMed ID: 29050823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules.
    Sahmani S; Aghdam MM
    Math Biosci; 2018 Jan; 295():24-35. PubMed ID: 29104135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermo-Electro-Mechanical Vibrations of Porous Functionally Graded Piezoelectric Nanoshells.
    Liu YF; Wang YQ
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30791652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Simulation of Nanoindentation on the Regular Wrinkled Graphene Sheet.
    Wang R; Pang H; Li M; Lai L
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32138250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent thermo-mechanical vibration of lipid supramolecular nano-tubules via nonlocal strain gradient Timoshenko beam theory.
    Alizadeh-Hamidi B; Hassannejad R; Omidi Y
    Comput Biol Med; 2021 Jul; 134():104475. PubMed ID: 34022484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlocal continuum model and molecular dynamics for free vibration of single-walled carbon nanotubes.
    Hu YG; Liew KM; Wang Q
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10401-7. PubMed ID: 22408916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods.
    Ragb O; Mohamed M; Matbuly MS
    Heliyon; 2019 Jun; 5(6):e01856. PubMed ID: 31211259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.