These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 31044285)
1. Numerical quantification of current status quo and future prediction of water quality in eight Asian megacities: challenges and opportunities for sustainable water management. Kumar P Environ Monit Assess; 2019 May; 191(6):319. PubMed ID: 31044285 [TBL] [Abstract][Full Text] [Related]
2. Hydrological Simulation for Predicting the Future Water Quality of Adyar River, Chennai, India. Kumar P; Dasgupta R; Ramaiah M; Avtar R; Johnson BA; Mishra BK Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31756957 [TBL] [Abstract][Full Text] [Related]
3. Simulation of Gomti River (Lucknow City, India) future water quality under different mitigation strategies. Kumar P Heliyon; 2018 Dec; 4(12):e01074. PubMed ID: 30603707 [TBL] [Abstract][Full Text] [Related]
4. Climate change impact assessment on Veneto and Friuli Plain groundwater. Part I: an integrated modeling approach for hazard scenario construction. Baruffi F; Cisotto A; Cimolino A; Ferri M; Monego M; Norbiato D; Cappelletto M; Bisaglia M; Pretner A; Galli A; Scarinci A; Marsala V; Panelli C; Gualdi S; Bucchignani E; Torresan S; Pasini S; Critto A; Marcomini A Sci Total Environ; 2012 Dec; 440():154-66. PubMed ID: 22940008 [TBL] [Abstract][Full Text] [Related]
5. The gap of water supply-Demand and its driving factors: From water footprint view in Huaihe River Basin. An M; Fan L; Huang J; Yang W; Wu H; Wang X; Khanal R PLoS One; 2021; 16(3):e0247604. PubMed ID: 33661966 [TBL] [Abstract][Full Text] [Related]
6. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France). Vernier F; Leccia-Phelpin O; Lescot JM; Minette S; Miralles A; Barberis D; Scordia C; Kuentz-Simonet V; Tonneau JP Environ Sci Pollut Res Int; 2017 Mar; 24(8):6923-6950. PubMed ID: 27726081 [TBL] [Abstract][Full Text] [Related]
7. Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia. Yihdego Y; Webb J Environ Monit Assess; 2016 May; 188(5):308. PubMed ID: 27108121 [TBL] [Abstract][Full Text] [Related]
8. Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management. Lane BA; Sandoval-Solis S; Stein ED; Yarnell SM; Pasternack GB; Dahlke HE Environ Manage; 2018 Oct; 62(4):678-693. PubMed ID: 29934651 [TBL] [Abstract][Full Text] [Related]
9. Exploring sustainable solutions for the water environment in Chinese and Southeast Asian cities. Luo P; Mu Y; Wang S; Zhu W; Mishra BK; Huo A; Zhou M; Lyu J; Hu M; Duan W; He B; Nover D Ambio; 2022 May; 51(5):1199-1218. PubMed ID: 34751934 [TBL] [Abstract][Full Text] [Related]
10. Integrated assessment and scenarios simulation of urban water security system in the southwest of China with system dynamics analysis. Yin S; Dongjie G; Weici S; Weijun G Water Sci Technol; 2017 Nov; 76(9-10):2255-2267. PubMed ID: 29144284 [TBL] [Abstract][Full Text] [Related]
11. Assessment of future water demand and supply using WEAP model in Dhasan River Basin, Madhya Pradesh, India. Nivesh S; Patil JP; Goyal VC; Saran B; Singh AK; Raizada A; Malik A; Kuriqi A Environ Sci Pollut Res Int; 2023 Feb; 30(10):27289-27302. PubMed ID: 36380179 [TBL] [Abstract][Full Text] [Related]
12. Spatial and temporal risk quotient based river assessment for water resources management. Wan Mohtar WHM; Abdul Maulud KN; Muhammad NS; Sharil S; Yaseen ZM Environ Pollut; 2019 May; 248():133-144. PubMed ID: 30784832 [TBL] [Abstract][Full Text] [Related]
13. Managing water quality of a river using an integrated geographically weighted regression technique with fuzzy decision-making model. Singh AP; Dhadse K; Ahalawat J Environ Monit Assess; 2019 May; 191(6):378. PubMed ID: 31104168 [TBL] [Abstract][Full Text] [Related]
14. An integrated fuzzy-based advanced eutrophication simulation model to develop the best management scenarios for a river basin. Srinivas R; Singh AP Environ Sci Pollut Res Int; 2018 Mar; 25(9):9012-9039. PubMed ID: 29333569 [TBL] [Abstract][Full Text] [Related]
15. Dynamic simulation of the optimal allocation of water resources via the introduction of integrated water environmental policies in Baoding, China. Mou S; Yan J; Sha J; Li S; Ma Y; He G; Song C Environ Sci Pollut Res Int; 2019 Sep; 26(26):27516-27533. PubMed ID: 31338758 [TBL] [Abstract][Full Text] [Related]
16. Natural dynamics and watershed approach incorporation in urban water management: A scoping review. Canteiro M; Cotler H; Mazari-Hiriart M; Babinet N; Maass M PLoS One; 2024; 19(8):e0309239. PubMed ID: 39213342 [TBL] [Abstract][Full Text] [Related]
17. Editorial: Water Resource Recovery Modelling. Spérandio M; Comeau Y; Rieger L Water Sci Technol; 2019 Jan; 79(1):1-2. PubMed ID: 30816856 [No Abstract] [Full Text] [Related]
18. Conflict between urbanization and water environmental protection: Lessons from the Xiangjiang River Basin in China. Chen X; Li Z; Chao L; Hao Y; Wang Y; Liang R; Li K; Pu X Water Res; 2024 Mar; 252():121237. PubMed ID: 38309062 [TBL] [Abstract][Full Text] [Related]
19. Emerging solutions to the water challenges of an urbanizing world. Larsen TA; Hoffmann S; Lüthi C; Truffer B; Maurer M Science; 2016 May; 352(6288):928-33. PubMed ID: 27199414 [TBL] [Abstract][Full Text] [Related]
20. Water resource management: a comparative evaluation of Brazil, Rio de Janeiro, the European Union, and Portugal. Araújo RS; da Gloria Alves M; Condesso de Melo MT; Chrispim ZM; Mendes MP; Silva Júnior GC Sci Total Environ; 2015 Apr; 511():815-28. PubMed ID: 25554387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]