BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31044286)

  • 1. Evaluation of heavy metal-induced responses in Silene vulgaris ecotypes.
    Muszyńska E; Labudda M; Kamińska I; Górecka M; Bederska-Błaszczyk M
    Protoplasma; 2019 Sep; 256(5):1279-1297. PubMed ID: 31044286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural, physiological and genetic diversification of Silene vulgaris ecotypes from heavy metal-contaminated areas and their synchronous in vitro cultivation.
    Muszyńska E; Labudda M; Różańska E; Hanus-Fajerska E; Koszelnik-Leszek A
    Planta; 2019 Jun; 249(6):1761-1778. PubMed ID: 30826883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotype-Specific Pathways of Reactive Oxygen Species Deactivation in Facultative Metallophyte
    Muszyńska E; Labudda M; Kral A
    Antioxidants (Basel); 2020 Jan; 9(2):. PubMed ID: 31991666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct co-tolerance responses to combined salinity and cadmium exposure in metallicolous and non-metallicolous ecotypes of Silene vulgaris.
    Wiszniewska A; Kamińska I; Hanus-Fajerska E; Sliwinska E; Koźmińska A
    Ecotoxicol Environ Saf; 2020 Sep; 201():110823. PubMed ID: 32540619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of lead, cadmium and zinc on protein changes in Silene vulgaris shoots cultured in vitro.
    Muszyńska E; Labudda M
    Ecotoxicol Environ Saf; 2020 Nov; 204():111086. PubMed ID: 32781345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal tolerance in contrasting ecotypes of Alyssum montanum.
    Muszyńska E; Labudda M; Różańska E; Hanus-Fajerska E; Znojek E
    Ecotoxicol Environ Saf; 2018 Oct; 161():305-317. PubMed ID: 29890432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans.
    Alirzayeva E; Neumann G; Horst W; Allahverdiyeva Y; Specht A; Alizade V
    Environ Pollut; 2017 Jan; 220(Pt B):1024-1035. PubMed ID: 27890587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Adaptation and Physiological Mechanisms in the Leaves of
    Sujkowska-Rybkowska M; Muszyńska E; Labudda M
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32456189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the HMA7 gene and transcriptomic analysis of candidate genes for copper tolerance in two Silene vulgaris ecotypes.
    Baloun J; Nevrtalova E; Kovacova V; Hudzieczek V; Cegan R; Vyskot B; Hobza R
    J Plant Physiol; 2014 Aug; 171(13):1188-96. PubMed ID: 24973591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of ecotypic variation for plant facilitation in a metal-polluted system: Stress-intolerant target ecotypes are the best beneficiaries and stress-tolerant nurse ecotypes the best benefactors.
    Nemer D; Michalet R; Randé H; Delerue F
    Sci Total Environ; 2023 Aug; 887():164134. PubMed ID: 37172845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response to Cadmium in
    Wiszniewska A; Labudda M; Muszyńska E
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression response of duplicated metallothionein 3 gene to copper stress in Silene vulgaris ecotypes.
    Nevrtalova E; Baloun J; Hudzieczek V; Cegan R; Vyskot B; Dolezel J; Safar J; Milde D; Hobza R
    Protoplasma; 2014 Nov; 251(6):1427-39. PubMed ID: 24748066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation and tolerance of lead in two contrasting ecotypes of Dianthus carthusianorum.
    Wójcik M; Tukiendorf A
    Phytochemistry; 2014 Apr; 100():60-5. PubMed ID: 24512840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity of metal tolerance and use of excluder metallophytes for the phytostabilization of metal polluted soils: the case of Silene paradoxa L.
    Colzi I; Rocchi S; Rangoni M; Del Bubba M; Gonnelli C
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):10960-9. PubMed ID: 24888612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The yield potential and growth responses of licorice (
    Tabrizi L; Lakzaei M; Motesharezadeh B
    Int J Phytoremediation; 2021; 23(3):316-327. PubMed ID: 32898452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome Response of Metallicolous and a Non-Metallicolous Ecotypes of
    Domka A; Rozpądek P; Ważny R; Jędrzejczyk RJ; Hubalewska-Mazgaj M; Gonnelli C; Benny J; Martinelli F; Puschenreiter M; Turnau K
    Plants (Basel); 2020 Jul; 9(8):. PubMed ID: 32731524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii.
    Huang H; Gupta DK; Tian S; Yang XE; Li T
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1640-51. PubMed ID: 22146912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of Nickel (Ni) tolerance.
    Agrawal B; Lakshmanan V; Kaushik S; Bais HP
    Planta; 2012 Aug; 236(2):477-89. PubMed ID: 22411507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the Ca/Mg ratio on Cu resistance in three Silene armeria ecotypes adapted to calcareous soil or to different, Ni- or Cu-enriched, serpentine sites.
    Lombini A; Llugany M; Poschenrieder C; Dinelli E; Barceló J
    J Plant Physiol; 2003 Dec; 160(12):1451-6. PubMed ID: 14717437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.