These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 31044464)
1. Conformational and functional effects of MPA-CdTe quantum dots on SOD: Evaluating the mechanism of oxidative stress induced by quantum dots in the mouse nephrocytes. Hao M; Liu R J Mol Recognit; 2019 Sep; 32(9):e2783. PubMed ID: 31044464 [TBL] [Abstract][Full Text] [Related]
2. Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes. Hao M; Liu R Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117104. PubMed ID: 31141778 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanism of copper-zinc superoxide dismutase activity change exposed to N-acetyl-L-cysteine-capped CdTe quantum dots-induced oxidative damage in mouse primary hepatocytes and nephrocytes. Sun H; Cui E; Liu R Environ Sci Pollut Res Int; 2015 Nov; 22(22):18267-77. PubMed ID: 26210583 [TBL] [Abstract][Full Text] [Related]
4. Comment on the: Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes (Spectrochim Acta A Mol Biomol Spectrosc. 2019 Sep 5; 220:117104). Aydemir D; Ulusu NN Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117792. PubMed ID: 31865110 [TBL] [Abstract][Full Text] [Related]
5. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Nguyen KC; Willmore WG; Tayabali AF Toxicology; 2013 Apr; 306():114-23. PubMed ID: 23485651 [TBL] [Abstract][Full Text] [Related]
6. MPA-modified CdTe quantum dots increased interleukin-1beta secretion through MyD88-dependent Toll-like receptor pathway and NLRP3 inflammasome activation in microglia. Wu T; Liang X; He K; Wei T; Wang Y; Lu J; Yao Y; Zhang T; Xue Y; Tang M Toxicol In Vitro; 2018 Oct; 52():41-51. PubMed ID: 29852215 [TBL] [Abstract][Full Text] [Related]
7. Altered Gene expression of ABC transporters, nuclear receptors and oxidative stress signaling in zebrafish embryos exposed to CdTe quantum dots. Tian J; Hu J; Liu G; Yin H; Chen M; Miao P; Bai P; Yin J Environ Pollut; 2019 Jan; 244():588-599. PubMed ID: 30384064 [TBL] [Abstract][Full Text] [Related]
8. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs) Due to Oxidative Stress in Vitro and in Vivo. Zhang T; Hu Y; Tang M; Kong L; Ying J; Wu T; Xue Y; Pu Y Int J Mol Sci; 2015 Sep; 16(10):23279-99. PubMed ID: 26404244 [TBL] [Abstract][Full Text] [Related]
9. Cytotoxicity of CdTe quantum dots with different surface coatings against yeast Saccharomyces cerevisiae. Han X; Lei J; Chen K; Li Q; Hao H; Zhou T; Jiang FL; Li M; Liu Y Ecotoxicol Environ Saf; 2019 Jun; 174():467-474. PubMed ID: 30852312 [TBL] [Abstract][Full Text] [Related]
10. Impairments of spatial learning and memory following intrahippocampal injection in rats of 3-mercaptopropionic acid-modified CdTe quantum dots and molecular mechanisms. Wu T; He K; Ang S; Ying J; Zhang S; Zhang T; Xue Y; Tang M Int J Nanomedicine; 2016; 11():2737-55. PubMed ID: 27358562 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis of different sizes of 3-mercaptopropionic acid-modified cadmium telluride quantum dot-induced toxic effects reveals immune response in rat hippocampus. Wu T; Liang X; He K; Wei T; Wang Y; Zou L; Lu J; Yao Y; Liu N; Zhang T; Xue Y; Tang M J Appl Toxicol; 2018 Sep; 38(9):1177-1194. PubMed ID: 29722432 [TBL] [Abstract][Full Text] [Related]
12. Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells. Tang S; Cai Q; Chibli H; Allagadda V; Nadeau JL; Mayer GD Toxicol Appl Pharmacol; 2013 Oct; 272(2):443-52. PubMed ID: 23770381 [TBL] [Abstract][Full Text] [Related]
13. Dose- and duration-dependent cytotoxicity and genotoxicity in human hepato carcinoma cells due to CdTe QDs exposure. Katubi KM; Alzahrani FM; Ali D; Alarifi S Hum Exp Toxicol; 2019 Aug; 38(8):914-926. PubMed ID: 30995871 [TBL] [Abstract][Full Text] [Related]
14. The protective effects of resveratrol, H Wu T; Zhan Q; Zhang T; Ang S; Ying J; He K; Zhang S; Xue Y; Tang M Toxicol In Vitro; 2017 Jun; 41():106-113. PubMed ID: 28219723 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial dynamics and mitophagy involved in MPA-capped CdTe quantum dots-induced toxicity in the human liver carcinoma (HepG2) cell line. Wu D; Lu J; Ma Y; Cao Y; Zhang T Environ Pollut; 2021 Apr; 274():115681. PubMed ID: 33308872 [TBL] [Abstract][Full Text] [Related]
16. Effect of metal accumulation-associated oxidative stress on the combined toxicity of quantum dots with Cu(2+) to Bacillus subtilis. Zhao J; Zhao Y; Liu B; Zhong K; Yao H; Lin K Environ Toxicol Pharmacol; 2016 Jun; 44():69-74. PubMed ID: 27131749 [TBL] [Abstract][Full Text] [Related]
17. Dose and time effect of CdTe quantum dots on antioxidant capacities of the liver and kidneys in mice. Wang J; Sun H; Meng P; Wang M; Tian M; Xiong Y; Zhang X; Huang P Int J Nanomedicine; 2017; 12():6425-6435. PubMed ID: 28919745 [TBL] [Abstract][Full Text] [Related]
18. Investigating the interaction of CdTe quantum dots with plasma protein transferrin and their interacting consequences at the molecular and cellular level. Yu X; Zheng X; Yang B; Wang J Int J Biol Macromol; 2021 Aug; 185():434-440. PubMed ID: 34197848 [TBL] [Abstract][Full Text] [Related]
19. New insights into the release mechanism of Cd Zhao L; Guo Z; Wu H; Wang Y; Zhang H; Liu R Ecotoxicol Environ Saf; 2020 Jun; 196():110569. PubMed ID: 32278141 [TBL] [Abstract][Full Text] [Related]
20. [Oxidative damage effects induced by CdTe quantum dots in mice]. Xie GY; Chen W; Wang QK; Cheng XR; Xu JN; Huang PL Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2017 Jul; 35(7):487-490. PubMed ID: 29081095 [No Abstract] [Full Text] [Related] [Next] [New Search]