These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 310445)

  • 1. Nile blue fluorescence signals from cut single muscle fibers under voltage or current clamp conditions.
    Vergara J; Bezanilla F; Salzberg BM
    J Gen Physiol; 1978 Dec; 72(6):775-800. PubMed ID: 310445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical signals from surface and T system membranes in skeletal muscle fibers. Experiments with the potentiometric dye NK2367.
    Heiny JA; Vergara J
    J Gen Physiol; 1982 Aug; 80(2):203-30. PubMed ID: 6981683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of calcium transients during excitation-contraction coupling in skeletal muscle fibers.
    Vergara J; DiFranco M
    Adv Exp Med Biol; 1992; 311():227-36. PubMed ID: 1529756
    [No Abstract]   [Full Text] [Related]  

  • 4. An improved vaseline gap voltage clamp for skeletal muscle fibers.
    Hille B; Campbell DT
    J Gen Physiol; 1976 Mar; 67(3):265-93. PubMed ID: 1083424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contraction threshold and the "hump" component of charge movement in frog skeletal muscle.
    Szücs G; Csernoch L; Magyar J; Kovács L
    J Gen Physiol; 1991 May; 97(5):897-911. PubMed ID: 1865176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling.
    Schneider MF; Chandler WK
    Nature; 1973 Mar; 242(5395):244-6. PubMed ID: 4540479
    [No Abstract]   [Full Text] [Related]  

  • 7. A nonlinear electrostatic potential change in the T-system of skeletal muscle detected under passive recording conditions using potentiometric dyes.
    Heiny JA; Jong DS
    J Gen Physiol; 1990 Jan; 95(1):147-75. PubMed ID: 2299329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observations on intramembrane charge movements in skeletal muscle.
    Almers W
    Philos Trans R Soc Lond B Biol Sci; 1975 Jun; 270(908):507-13. PubMed ID: 238246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient potassium currents in slow muscle fibers.
    McLarnon JG
    Can J Physiol Pharmacol; 1978 Oct; 56(5):882-5. PubMed ID: 309352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of tetracaine on charge movements and Ca2+ signals in frog skeletal muscle.
    Csernoch L; Huang CL; Szucs G; Kovacs L
    J Gen Physiol; 1988 Nov; 92(5):601-12. PubMed ID: 3266232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parapodial swim muscle in Aplysia brasiliana. I. Voltage-gated membrane currents in isolated muscle fibers.
    Laurienti PJ; Blankenship JE
    J Neurophysiol; 1996 Sep; 76(3):1517-30. PubMed ID: 8890271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage clamp experiments of single muscle fibers of Rana pipiens.
    Moore LE
    J Gen Physiol; 1972 Jul; 60(1):1-19. PubMed ID: 4537778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barium ions and excitation-contraction coupling of frog single muscle fibres under controlled current and voltage.
    Raymond G; Potreau D
    J Physiol (Paris); 1977 Oct; 73(5):617-31. PubMed ID: 303701
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of external calcium concentration and pH on charge movement in frog skeletal muscle.
    Shlevin HH
    J Physiol; 1979 Mar; 288():129-58. PubMed ID: 38332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage dependence of depolarization-contraction coupling processes in skeletal muscle cells.
    Lacinová L; Poledna J
    Gen Physiol Biophys; 1990 Apr; 9(2):113-28. PubMed ID: 2358185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity.
    Pizarro G; Fitts R; Uribe I; Ríos E
    J Gen Physiol; 1989 Sep; 94(3):405-28. PubMed ID: 2481710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomical distribution of voltage-dependent membrane capacitance in frog skeletal muscle fibers.
    Huang CL; Peachey LD
    J Gen Physiol; 1989 Mar; 93(3):565-84. PubMed ID: 2784827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle.
    Vergara J; Tsien RY; Delay M
    Proc Natl Acad Sci U S A; 1985 Sep; 82(18):6352-6. PubMed ID: 2994073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of membrane processes in controlling skeletal muscle function.
    Kovács L
    Acta Physiol Acad Sci Hung; 1981; 57(1):1-8. PubMed ID: 6269349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the calcium release domains during excitation-contraction coupling in skeletal muscle fibres.
    DiFranco M; Novo D; Vergara JL
    Pflugers Arch; 2002 Feb; 443(4):508-19. PubMed ID: 11907817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.