These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 31044559)
21. Moving beyond the comprehensive in vitro proarrhythmia assay: Use of human-induced pluripotent stem cell-derived cardiomyocytes to assess contractile effects associated with drug-induced structural cardiotoxicity. Yang X; Papoian T J Appl Toxicol; 2018 Sep; 38(9):1166-1176. PubMed ID: 29484688 [TBL] [Abstract][Full Text] [Related]
22. A temperature-dependent in silico model of the human ether-à-go-go-related (hERG) gene channel. Li Z; Dutta S; Sheng J; Tran PN; Wu W; Colatsky T J Pharmacol Toxicol Methods; 2016; 81():233-9. PubMed ID: 27178106 [TBL] [Abstract][Full Text] [Related]
23. Impact of disease state on arrhythmic event detection by action potential modelling in cardiac safety pharmacology. Christophe B; Crumb WJ J Pharmacol Toxicol Methods; 2019; 96():15-26. PubMed ID: 30580044 [TBL] [Abstract][Full Text] [Related]
24. [hiPSCs and organoids: prediction of arrhythmogenic risks for optimized traditional Chinese medicine]. Sun HK; Gao Y; Zhu MJ; Tang JF; Wu Y; Li B; Yu R; Wang Y; Zhou LY Zhongguo Zhong Yao Za Zhi; 2023 Oct; 48(20):5404-5409. PubMed ID: 38114134 [TBL] [Abstract][Full Text] [Related]
25. Drug potency on inhibiting late Na Wu M; Tran PN; Sheng J; Randolph AL; Wu WW J Pharmacol Toxicol Methods; 2019; 100():106605. PubMed ID: 31255744 [TBL] [Abstract][Full Text] [Related]
26. An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. Crumb WJ; Vicente J; Johannesen L; Strauss DG J Pharmacol Toxicol Methods; 2016; 81():251-62. PubMed ID: 27060526 [TBL] [Abstract][Full Text] [Related]
27. Optimization of an Dutta S; Chang KC; Beattie KA; Sheng J; Tran PN; Wu WW; Wu M; Strauss DG; Colatsky T; Li Z Front Physiol; 2017; 8():616. PubMed ID: 28878692 [TBL] [Abstract][Full Text] [Related]
28. Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel-Drug Binding Kinetics and Multichannel Pharmacology. Li Z; Dutta S; Sheng J; Tran PN; Wu W; Chang K; Mdluli T; Strauss DG; Colatsky T Circ Arrhythm Electrophysiol; 2017 Feb; 10(2):e004628. PubMed ID: 28202629 [TBL] [Abstract][Full Text] [Related]
29. Recording of multiple ion current components and action potentials in human induced pluripotent stem cell-derived cardiomyocytes via automated patch-clamp. Mann SA; Heide J; Knott T; Airini R; Epureanu FB; Deftu AF; Deftu AT; Radu BM; Amuzescu B J Pharmacol Toxicol Methods; 2019; 100():106599. PubMed ID: 31228558 [TBL] [Abstract][Full Text] [Related]
30. Improving prediction of torsadogenic risk in the CiPA in silico model by appropriately accounting for clinical exposure. Leishman DJ J Pharmacol Toxicol Methods; 2020; 101():106654. PubMed ID: 31730936 [TBL] [Abstract][Full Text] [Related]
31. Applying the CiPA approach to evaluate cardiac proarrhythmia risk of some antimalarials used off-label in the first wave of COVID-19. Delaunois A; Abernathy M; Anderson WD; Beattie KA; Chaudhary KW; Coulot J; Gryshkova V; Hebeisen S; Holbrook M; Kramer J; Kuryshev Y; Leishman D; Lushbough I; Passini E; Redfern WS; Rodriguez B; Rossman EI; Trovato C; Wu C; Valentin JP Clin Transl Sci; 2021 May; 14(3):1133-1146. PubMed ID: 33620150 [TBL] [Abstract][Full Text] [Related]
32. Multi-parametric assessment of cardiomyocyte excitation-contraction coupling using impedance and field potential recording: A tool for cardiac safety assessment. Zhang X; Guo L; Zeng H; White SL; Furniss M; Balasubramanian B; Lis E; Lagrutta A; Sannajust F; Zhao LL; Xi B; Wang X; Davis M; Abassi YA J Pharmacol Toxicol Methods; 2016; 81():201-16. PubMed ID: 27282640 [TBL] [Abstract][Full Text] [Related]
34. 13th Annual Meeting of the Safety Pharmacology Society: focus on novel technologies and safety pharmacology frontiers. Cavero I Expert Opin Drug Saf; 2014 Sep; 13(9):1271-81. PubMed ID: 25054438 [TBL] [Abstract][Full Text] [Related]
35. Minimizing repolarization-related proarrhythmic risk in drug development and clinical practice. Farkas AS; Nattel S Drugs; 2010 Mar; 70(5):573-603. PubMed ID: 20329805 [TBL] [Abstract][Full Text] [Related]
36. Occurrence of early afterdepolarization under healthy or hypertrophic cardiomyopathy conditions in the human ventricular endocardial myocyte: In silico study using 109 torsadogenic or non-torsadogenic compounds. Christophe B Toxicol Appl Pharmacol; 2022 Mar; 438():115914. PubMed ID: 35150662 [TBL] [Abstract][Full Text] [Related]
37. Early drug development: assessment of proarrhythmic risk and cardiovascular safety. Lester RM; Olbertz J Expert Rev Clin Pharmacol; 2016 Dec; 9(12):1611-1618. PubMed ID: 27718759 [TBL] [Abstract][Full Text] [Related]
38. Evolving regulatory paradigm for proarrhythmic risk assessment for new drugs. Vicente J; Stockbridge N; Strauss DG J Electrocardiol; 2016; 49(6):837-842. PubMed ID: 27524478 [TBL] [Abstract][Full Text] [Related]
39. Utility of Normalized TdP Score System in Drug Proarrhythmic Potential Assessment: A Blinded in vitro Study of CiPA Drugs. Liu T; Liu J; Lu HR; Li H; Gallacher DJ; Chaudhary K; Wang Y; Yan GX Clin Pharmacol Ther; 2021 Jun; 109(6):1606-1617. PubMed ID: 33283267 [TBL] [Abstract][Full Text] [Related]
40. CSAHi study: Validation of multi-electrode array systems (MEA60/2100) for prediction of drug-induced proarrhythmia using human iPS cell-derived cardiomyocytes -assessment of inter-facility and cells lot-to-lot-variability. Nozaki Y; Honda Y; Watanabe H; Saiki S; Koyabu K; Itoh T; Nagasawa C; Nakamori C; Nakayama C; Iwasaki H; Suzuki S; Washio I; Takahashi E; Miyamoto K; Yamanishi A; Endo H; Shinozaki J; Nogawa H; Kunimatsu T Regul Toxicol Pharmacol; 2016 Jun; 77():75-86. PubMed ID: 26884090 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]