These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31044842)

  • 41. Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer.
    Zhou J; Liao C; Wang Y; Yin G; Zhong X; Yang K; Sun B; Wang G; Li Z
    Opt Express; 2014 Jan; 22(2):1680-6. PubMed ID: 24515175
    [TBL] [Abstract][Full Text] [Related]  

  • 42. All-optical switch based on the local nonlinear Mach-Zehnder interferometer.
    Wu YD; Huang ML; Chen MH; Tasy RZ
    Opt Express; 2007 Aug; 15(16):9883-92. PubMed ID: 19547339
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Group delay manipulation in a passive microwave-photonic fiber optic Mach-Zehnder interferometer.
    Zhu C; Wang J; Huang J
    Opt Lett; 2022 Sep; 47(18):4688-4691. PubMed ID: 36107064
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic strain measured by Mach-Zehnder interferometric optical fiber sensors.
    Her SC; Yang CM
    Sensors (Basel); 2012; 12(3):3314-26. PubMed ID: 22737010
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing.
    He H; Shao LY; Luo B; Li Z; Zou X; Zhang Z; Pan W; Yan L
    Opt Express; 2016 Mar; 24(5):4842-4855. PubMed ID: 29092312
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomography.
    Xiong Q; Tong X; Deng C; Zhang C; Wang P; Zheng Z; Liu F
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29757246
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrated Mach-Zehnder-based 2x2 all-optical switch using nonlinear two-mode interference waveguide.
    Ghayour R; Taheri AN; Fathi MT
    Appl Opt; 2008 Feb; 47(5):632-8. PubMed ID: 18268773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. All-silicon interferometer with multimode waveguides for temperature-insensitive filters and compact biosensors.
    Guan X; Frandsen LH
    Opt Express; 2019 Jan; 27(2):753-760. PubMed ID: 30696156
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temperature-insensitive waveguide sensor using a ring cascaded with a Mach-Zehnder interferometer.
    Zhang Y; Zou J; Cao Z; He JJ
    Opt Lett; 2019 Jan; 44(2):299-302. PubMed ID: 30644885
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement.
    Kang Z; Wen X; Li C; Sun J; Wang J; Jian S
    Appl Opt; 2014 Apr; 53(12):2691-5. PubMed ID: 24787597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultra-compact all-in-fiber-core Mach-Zehnder interferometer.
    Chen P; Shu X; Sugden K
    Opt Lett; 2017 Oct; 42(20):4059-4062. PubMed ID: 29028012
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mach-Zehnder interferometer using frequency-domain beamsplitter.
    Kobayashi T; Yamazaki D; Matsuki K; Ikuta R; Miki S; Yamashita T; Terai H; Yamamoto T; Koashi M; Imoto N
    Opt Express; 2017 May; 25(10):12052-12060. PubMed ID: 28788758
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Control of Kerr-microresonator optical frequency comb by a dual-parallel Mach-Zehnder interferometer.
    Kuse N; Briles TC; Papp SB; Fermann ME
    Opt Express; 2019 Feb; 27(4):3873-3883. PubMed ID: 30876012
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tunable and channel spacing precisely controlled comb filters based on the fused taper technology.
    Han M; Li X; Zhang S; Han H; Liu J; Yang Z
    Opt Express; 2018 Jan; 26(1):265-272. PubMed ID: 29328303
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design and fabrication of a heterostructured cladding solid-core photonic bandgap fiber for construction of Mach-Zehnder interferometer and high sensitive curvature sensor.
    Hu X; Peng J; Yang L; Li J; Li H; Dai N
    Opt Express; 2018 Mar; 26(6):7005-7012. PubMed ID: 29609385
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mach-Zehnder interferometer switch with a high extinction ratio over a wide wavelength range.
    Mizuno T; Takahashi H; Kitoh T; Oguma M; Kominato T; Shibata T
    Opt Lett; 2005 Feb; 30(3):251-3. PubMed ID: 15751875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. GO/MoS
    Shi Y; Wu J; Zhou J; Xie Z; Wang F; Gao F; Dong J; Wang Z; Wang Q; Shen C
    Opt Lett; 2024 Aug; 49(15):4258-4261. PubMed ID: 39090908
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mach-Zehnder interferometer with a uniform wavelength period.
    Mizuno T; Kitoh T; Oguma M; Inoue Y; Shibata T; Takahashi H
    Opt Lett; 2004 Mar; 29(5):454-6. PubMed ID: 15005190
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity.
    Qin K; Hu S; Retterer ST; Kravchenko II; Weiss SM
    Opt Lett; 2016 Feb; 41(4):753-6. PubMed ID: 26872180
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical phasing method based on scanning white-light interferometry for multi-aperture optical telescopes.
    Li Y; Wang SQ
    Opt Lett; 2021 Feb; 46(4):793-796. PubMed ID: 33577516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.