These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31044895)

  • 1. Long-range in situ picometer measurement of the period of an interference field.
    Xiang X; Jia W; Xiang C; Li M; Bu F; Zhu S; Zhou C; Wei C
    Appl Opt; 2019 Apr; 58(11):2929-2935. PubMed ID: 31044895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision fringe period metrology using an LSQ sine fit algorithm.
    Xiang X; Li M; Wei C; Zhou C
    Appl Opt; 2018 Jun; 57(17):4777-4784. PubMed ID: 30118093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Holographic fabrication of an arrayed one-axis scale grating for a two-probe optical linear encoder.
    Li X; Zhou Q; Zhu X; Lu H; Yang L; Ma D; Sun J; Ni K; Wang X
    Opt Express; 2017 Jul; 25(14):16028-16039. PubMed ID: 28789121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterodyne period measurement in a scanning beam interference lithography system.
    Jiang S; Lü B; Song Y; Liu Z; Wang W; Shuo L; Bayanheshig
    Appl Opt; 2020 Jul; 59(19):5830-5836. PubMed ID: 32609710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Picometer-differential twice-exposed element for three-dimensional measurement with extremely long depth of field.
    Li C; Zhou C; Lu Y; Miao C; Yu J; Yin Z; Ye J
    Appl Opt; 2020 Jun; 59(17):5234-5239. PubMed ID: 32543543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid application of laser-focused atomic deposition and extreme ultraviolet interference lithography methods for manufacturing of self-traceable nanogratings.
    Liu J; Zhao J; Deng X; Yang S; Xue C; Wu Y; Tai R; Hu X; Dai G; Li T; Cheng X
    Nanotechnology; 2021 Apr; 32(17):175301. PubMed ID: 33461181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scan angle error measurement based on phase-stepping algorithms in scanning beam interference lithography.
    Li M; Xiang X; Zhou C; Wei C
    Appl Opt; 2019 Apr; 58(10):2641-2649. PubMed ID: 31045064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings].
    Zhou Q; Zeng LJ; Li LF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1674-8. PubMed ID: 18844187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarized holographic lithography system for high-uniformity microscale patterning with periodic tunability.
    Xue G; Zhai Q; Lu H; Zhou Q; Ni K; Lin L; Wang X; Li X
    Microsyst Nanoeng; 2021; 7():31. PubMed ID: 34567745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of 50 nm period gratings with multilevel interference lithography.
    Chang CH; Zhao Y; Heilmann RK; Schattenburg ML
    Opt Lett; 2008 Jul; 33(14):1572-4. PubMed ID: 18628801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterning nanoscale crossed grating with high uniformity by using two-axis Lloyd's mirrors based interference lithography.
    Xue G; Lu H; Li X; Zhou Q; Wu G; Wang X; Zhai Q; Ni K
    Opt Express; 2020 Jan; 28(2):2179-2191. PubMed ID: 32121913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profile measurement taken with liquid-crystal gratings.
    Kakunai S; Sakamoto T; Iwata K
    Appl Opt; 1999 May; 38(13):2824-8. PubMed ID: 18319861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermomechanical modification of diffraction gratings.
    Sumetsky M; Dulashko Y; Fleming JW; Kortan A; Reyes PI; Westbrook PS
    Opt Lett; 2004 Jun; 29(12):1315-7. PubMed ID: 15233420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Imbalance Optimization in Interference Linear Displacement Sensor with Surface Gratings.
    Odinokov S; Shishova M; Kovalev M; Zherdev A; Lushnikov D
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tilted superstructure fiber grating used as a Fourier-transform spectrometer.
    Wielandy S; Dunn SC
    Opt Lett; 2004 Jul; 29(14):1614-6. PubMed ID: 15309836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of asymmetric grating structures on measurement accuracy in integrated phase grating interference-based metrology.
    Zhang T; Zhao X; Cui J; Tan J
    Appl Opt; 2019 Mar; 58(7):1847-1854. PubMed ID: 30874224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films.
    Sabat RG
    Opt Express; 2013 Apr; 21(7):8711-23. PubMed ID: 23571960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving unlimited recording length in interference lithography via broad-beam scanning exposure with self-referencing alignment.
    Ma D; Zhao Y; Zeng L
    Sci Rep; 2017 Apr; 7(1):926. PubMed ID: 28424475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of thermal-resistant gratings for high-temperature measurements using geometric phase analysis.
    Zhang Q; Liu Z; Xie H; Ma K; Wu L
    Rev Sci Instrum; 2016 Dec; 87(12):123104. PubMed ID: 28040981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holographic fabrication of large-constant concave gratings for wide-range flat-field spectrometers with the addition of a concave lens.
    Zhou Q; Li X; Ni K; Tian R; Pang J
    Opt Express; 2016 Jan; 24(2):732-8. PubMed ID: 26832458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.