BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31045016)

  • 1. Monte Carlo simulation of the influence of internal optical absorption on the external Raman signal for biological samples.
    Krasnikov I; Suhr C; Seteikin A; Meinhardt-Wollweber M; Roth B
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):877-882. PubMed ID: 31045016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of in vivo Raman spectral measurements of human skin with a multi-layered tissue optical model.
    Wang S; Zhao J; Lui H; He Q; Bai J; Zeng H
    J Biophotonics; 2014 Sep; 7(9):703-12. PubMed ID: 24307289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Raman spectroscopy in turbid media.
    Reble C; Gersonde I; Andree S; Eichler HJ; Helfmann J
    J Biomed Opt; 2010; 15(3):037016. PubMed ID: 20615045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue.
    Akbarzadeh A; Edjlali E; Sheehy G; Selb J; Agarwal R; Weber J; Leblond F
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33111509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two efficient approaches for modeling of Raman scattering in homogeneous turbid media.
    Krasnikov I; Suhr C; Seteikin A; Roth B; Meinhardt-Wollweber M
    J Opt Soc Am A Opt Image Sci Vis; 2016 Mar; 33(3):426-33. PubMed ID: 26974912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state.
    Lu L; Shi L; Secor J; Alfano R
    J Photochem Photobiol B; 2018 Feb; 179():18-22. PubMed ID: 29306722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the resonance Raman scattering properties of beta-carotene incorporated into SBA-15.
    Tan S; Zhang G; Shen A; Hu J; Hu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Oct; 77(2):518-21. PubMed ID: 20630797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental and numerical modelling investigation of the optical properties of Intralipid using deep Raman spectroscopy.
    Moran LJ; Wordingham F; Gardner B; Stone N; Harries TJ
    Analyst; 2021 Dec; 146(24):7601-7610. PubMed ID: 34783335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation.
    Lu L; Wu J; Wei L; Wu F
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Dec; 169():116-21. PubMed ID: 27348046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo.
    Bender JE; Vishwanath K; Moore LK; Brown JQ; Chang V; Palmer GM; Ramanujam N
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):960-8. PubMed ID: 19423425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computationally efficient Monte-Carlo model for biomedical Raman spectroscopy.
    Dumont AP; Fang Q; Patil CA
    J Biophotonics; 2021 Jul; 14(7):e202000377. PubMed ID: 33733621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study of biological molecules in water by using the resonance raman spectra in liquid-core optical fiber].
    Jia LH; Wang YD; Sun CL; Li ZL; Li ZW; Wang LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2686-8. PubMed ID: 20038038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of signal on depth in transmission Raman spectroscopy.
    Matousek P; Everall N; Littlejohn D; Nordon A; Bloomfield M
    Appl Spectrosc; 2011 Jul; 65(7):724-33. PubMed ID: 21740632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo method for photon heating using temperature-dependent optical properties.
    Slade AB; Aguilar G
    Comput Methods Programs Biomed; 2015 Feb; 118(2):234-41. PubMed ID: 25488656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Resonance Raman Spectral Properties Studies of Beta-carotene in Solution].
    Sun MJ; Liu S; Liu TY; Xu SN; Sun CL; Zhou M; Li ZW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1904-7. PubMed ID: 26717749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: a combined experimental and theoretical analysis.
    Karabacak M; Kose E; Atac A; Ali Cipiloglu M; Kurt M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():892-908. PubMed ID: 22902933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pressure and solvent on Raman spectra of all-trans-beta-carotene.
    Liu WL; Zheng ZR; Zhu RB; Liu ZG; Xu DP; Yu HM; Wu WZ; Li AH; Yang YQ; Su WH
    J Phys Chem A; 2007 Oct; 111(40):10044-9. PubMed ID: 17880189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin.
    Chen CT; Chuang C; Cao J; Ball V; Ruch D; Buehler MJ
    Nat Commun; 2014 May; 5():3859. PubMed ID: 24848640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on the effect of pressure on the molecular structure and pi-electron delocalization of beta-carotene by raman spectroscopy].
    Wu NN; Ouyang SL; Li ZW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Sep; 33(9):2429-32. PubMed ID: 24369646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction method for absorption-dependent signal enhancement by a liquid-core optical fiber.
    Qi D; Berger AJ
    Appl Opt; 2006 Jan; 45(3):489-94. PubMed ID: 16463733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.